首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Short-term mechanical ventilation with high tidal volume (HVT) causes mild to moderate lung injury and impairs active Na+ transport and lung liquid clearance in rats. Dopamine (DA) enhances active Na+ transport in normal rat lungs by increasing Na+-K+-ATPase activity in the alveolar epithelium. We examined whether DA would increase alveolar fluid reabsorption in rats ventilated with HVT for 40 min compared with those ventilated with low tidal volume (LVT) and with nonventilated rats. Similar to previous reports, HVT ventilation decreased alveolar fluid reabsorption by ~50% (P < 0.001). DA increased alveolar fluid reabsorption in nonventilated control rats (by ~60%), LVT ventilated rats (by approximately 55%), and HVT ventilated rats (by ~200%). In parallel studies, DA increased Na+-K+-ATPase activity in cultured rat alveolar epithelial type II cells (ATII). Depolymerization of cellular microtubules by colchicine inhibited the effect of DA on HVT ventilated rats as well as on Na+-K+-ATPase activity in ATII cells. Neither DA nor colchicine affected the short-term Na+-K+-ATPase alpha1- and beta1-subunit mRNA steady-state levels or total alpha1- and beta1-subunit protein abundance in ATII cells. Thus we reason that DA improved alveolar fluid reabsorption in rats ventilated with HVT by upregulating the Na+-K+-ATPase function in alveolar epithelial cells.  相似文献   

2.
Fluid reabsorption from alveolar space is driven by active Na reabsorption via epithelial Na channels (ENaCs) and Na-K-ATPase. Both are inhibited by hypoxia. Here we tested whether hypoxia decreases Na transport by decreasing the number of copies of transporters in alveolar epithelial cells and in lungs of hypoxic rats. Membrane fractions were prepared from A549 cells exposed to hypoxia (3% O(2)) as well as from whole lung tissue and alveolar type II cells from rats exposed to hypoxia. Transport proteins were measured by Western blot analysis. In A549 cells, alpha(1)- and beta(1)-Na-K-ATPase, Na/K/2Cl cotransport, and ENaC proteins decreased during hypoxia. In whole lung tissue, alpha(1)-Na-K-ATPase and Na/K/2Cl cotransport decreased. alpha- and beta-ENaC mRNAs also decreased in hypoxic lungs. Similar results were seen in alveolar type II cells from hypoxic rats. These results indicate a slow decrease in the amount of Na-transporting proteins in alveolar epithelial cells during exposure to hypoxia that also occurs in vivo in lungs from hypoxic animals. The reduced number of transporters might account for the decreased transport activity and impaired edema clearance in hypoxic lungs.  相似文献   

3.
Impaired epithelial sodium channel function predisposes to delayed resorption of pulmonary edema and more severe experimental lung injury, whereas even a small fraction of the normal Na-K-ATPase activity is thought to be sufficient to maintain normal ion transport. However, direct proof is lacking. Therefore, we studied baseline and cAMP stimulated alveolar fluid clearance (AFC) in mice with a 50% decrease in lung protein expression of the alpha(1)- and/or alpha(2)-subunit of the Na-K-ATPase. There was no difference in basal and stimulated AFC in alpha(1)(+/-) or alpha(2)(+/-) mice compared with wild-type littermates. Also, the compound heterozygous mice (alpha(1)(+/-)/alpha(2)(+/-)) had normal basal AFC. However, the combined alpha(1)(+/-)/alpha(2)(+/-) mice showed a significant decrease in cAMP-stimulated AFC compared with wild-type littermates (11.1 +/- 1.0 vs. 14.9 +/- 1.8%/30 min, P < 0.001). When exposed to 96 h of >95% hyperoxia, the decrease in stimulated AFC in the alpha(1)(+/-)/alpha(2)(+/-) mice was not associated with more lung edema compared with wild-type littermates (lung wet-to-dry weight ratio 6.6 +/- 0.9 vs. 5.9 +/- 1.1, respectively; P = not significant). Thus a 50% decrease in protein expression of the alpha(1)- or alpha(2)-subunits of the Na-K-ATPase does not impair basal or stimulated AFC. However, a 50% protein reduction in both the alpha(1)- and alpha(2)-subunits of the Na-K-ATPase produces a submaximal stimulated AFC, suggesting a synergistic role for alpha(1)- and alpha(2)-subunits in cAMP-dependent alveolar epithelial fluid clearance.  相似文献   

4.
In patients requiring mechanical ventilation for acute lung injury or acute respiratory distress syndrome (ARDS), tidal volume reduction decreases mortality, but the mechanisms of the protective effect have not been fully explored. To test the hypothesis that alveolar macrophage activation is an early and critical event in the initiation of ventilator-induced lung injury (VILI), rats were ventilated with high tidal volume (HV(T)) for 10 min to 4 h. Alveolar macrophage counts in bronchoalveolar lavage (BAL) fluid decreased 45% by 20 min of HV(T) (P < 0.05) consistent with activation-associated adhesion. Depletion of alveolar macrophages in vivo with liposomal clodronate significantly decreased permeability and pulmonary edema following 4 h of HV(T) (P < 0.05). BAL fluid from rats exposed to 20 min of HV(T) increased nitric oxide synthase activity nearly threefold in na?ve primary alveolar macrophages (P < 0.05) indicating that soluble factors present in the air spaces contribute to macrophage activation in VILI. Media from cocultures of alveolar epithelial cell monolayers and alveolar macrophages exposed to 30 min of stretch in vitro also significantly increased nitrite production in na?ve macrophages (P < 0.05), but media from stretched alveolar epithelial cells or primary alveolar macrophages alone did not, suggesting alveolar epithelial cell-macrophage interaction was required for the subsequent macrophage activation observed. These data demonstrate that injurious mechanical ventilation rapidly activates alveolar macrophages and that alveolar macrophages play an important role in the initial pathogenesis of VILI.  相似文献   

5.
6.
High tidal volume (HV(T)) ventilation causes pulmonary endothelial barrier dysfunction. HV(T) ventilation also increases lung nitric oxide (NO) and cGMP. NO contributes to HV(T) lung injury, but the role of cGMP is unknown. In the current study, ventilation of isolated C57BL/6 mouse lungs increased perfusate cGMP as a function of V(T). Ventilation with 20 ml/kg V(T) for 80 min increased the filtration coefficient (K(f)), an index of vascular permeability. The increased cGMP and K(f) caused by HV(T) were attenuated by nitric oxide synthase (NOS) inhibition and in lungs from endothelial NOS knockout mice. Inhibition of soluble guanylyl cyclase (sGC) in wild-type lungs (10 muM ODQ) also blocked cGMP generation and inhibited the increase in K(f), suggesting an injurious role for sGC-derived cGMP. sGC inhibition also attenuated lung Evans blue dye albumin extravasation and wet-to-dry weight ratio in an anesthetized mouse model of HV(T) injury. Additional activation of sGC (1.5 muM BAY 41-2272) in isolated lungs at 40 min increased cGMP production and K(f) in lungs ventilated with 15 ml/kg V(T). HV(T) endothelial barrier dysfunction was attenuated with a nonspecific phosphodiesterase (PDE) inhibitor (100 muM IBMX) as well as an inhibitor (10 muM BAY 60-7550) specific for the cGMP-stimulated PDE2A. Concordantly, we found a V(T)-dependent increase in lung cAMP hydrolytic activity and PDE2A protein expression with a decrease in lung cAMP concentration that was blocked by BAY 60-7550. We conclude that HV(T)-induced endothelial barrier dysfunction resulted from a simultaneous increase in NO/sGC-derived cGMP and PDE2A expression causing decreased cAMP.  相似文献   

7.
8.
Thyroid hormone (T3) increases Na-K-ATPase activity in rat adult alveolar type II cells via a PI3K-dependent pathway. In these cells, dopamine and beta-adrenergic agonists can stimulate Na-K-ATPase activity through either PI3K or MAPK pathways. We assessed the role of the MAPK pathway in the stimulation of Na-K-ATPase by T3. In the adult rat alveolar type II-like cell line MP48, T3 enhanced MAPK/ERK1/2 activity in a dose-dependent manner. Increased ERK1/2 phosphorylation was observed within 5 min, peaked at 20 min, and then decreased. Two MEK1/2 inhibitors, U0126 and PD-98059, each abolished the T3-induced increase in the quantity of Na-K-ATPase alpha(1)-subunit plasma membrane protein and Na-K-ATPase activity. T3 also increased the phosphorylation of MAPK/p38; however, SB-203580, a specific inhibitor of MAPK/p38 activity, did not prevent the T3-induced Na-K-ATPase activity. SP-600125, a specific inhibitor of the MAPK/JNK pathway, also did not block the T3-induced Na-K-ATPase activity. Phorbol 12-myristate 13-acetate (PMA) significantly increased ERK1/2 phosphorylation and Na-K-ATPase activity. The PMA-induced Na-K-ATPase activity was inhibited by U0126. These data indicate that activation of MAPK-ERK1/2 was required for the T3-induced increase in Na-K-ATPase activity in addition to the requirement for the PI3K pathway.  相似文献   

9.
Exposure of adult rats to 100% O(2) results in lung injury and decreases active sodium transport and lung edema clearance. It has been reported that beta-adrenergic agonists increase lung edema clearance in normal rat lungs by upregulating alveolar epithelial Na(+)-K(+)-ATPase function. This study was designed to examine whether isoproterenol (Iso) affects lung edema clearance in rats exposed to 100% O(2) for 64 h. Active Na(+) transport and lung edema clearance decreased by approximately 44% in rats exposed to acute hyperoxia. Iso (10(-6) M) increased the ability of the lung to clear edema in room-air-breathing rats (from 0.50 +/- 0.02 to 0.99 +/- 0. 05 ml/h) and in rats exposed to 100% O(2) (from 0.28 +/- 0.03 to 0. 86 +/- 0.09 ml/h; P < 0.001). Disruption of intracellular microtubular transport of ion-transporting proteins by colchicine (0. 25 mg/100 g body wt) inhibited the stimulatory effects of Iso in hyperoxia-injured rat lungs, whereas the isomer beta-lumicolchicine, which does not affect microtubular transport, did not inhibit active Na(+) transport stimulated by Iso. Accordingly, Iso restored the lung's ability to clear edema after hyperoxic lung injury, probably by stimulation of the recruitment of ion-transporting proteins (Na(+)-K(+)-ATPase) from intracellular pools to the plasma membrane in rat alveolar epithelium.  相似文献   

10.
Excessive mechanical ventilation results in changes in lung tissue mechanics. We hypothesized that changes in tissue properties might be related to changes in the extracellular matrix component proteoglycans (PGs). The effect of different ventilation regimens on lung tissue mechanics and PGs was examined in an in vivo rat model. Animals were anesthetized, tracheostomized, and ventilated at a tidal volume of 8 (VT(8)), 20, or 30 (VT(30)) ml/kg, positive end-expiratory pressure of 0 (PEEP(0)) or 1.5 (PEEP(1.5)) cmH(2)O, and frequency of 1.5 Hz for 2 h. The constant-phase model was used to derive airway resistance, tissue elastance, and tissue damping. After physiological measurements, one lung was frozen for immunohistochemistry and the other was reserved for PG extraction and Western blotting. After 2 h of mechanical ventilation, tissue elastance and damping were significantly increased in rats ventilated at VT(30)PEEP(0) compared with control rats (ventilated at VT(8)PEEP(1.5)). Versican, basement membrane heparan sulfate PG, and biglycan were all increased in rat lungs ventilated at VT(30)PEEP(0) compared with control rats. At VT(30)PEEP(0), heparan sulfate PG and versican staining became prominent in the alveolar wall and airspace; biglycan was mostly localized in the airway wall. These data demonstrate that alterations in lung tissue mechanics with excessive mechanical ventilation are accompanied by changes in all classes of extracellular matrix PG.  相似文献   

11.
Epidermal growth factor increases lung liquid clearance in rat lungs   总被引:9,自引:0,他引:9  
Epidermal growthfactor (EGF) has been reported to stimulate the proliferation ofepithelial cells and increase Na+flux andNa+-K+-ATPasefunction in alveolar epithelial cell monolayers. Increases inNa+-K+-ATPasein alveolar type II cells (AT2) have been associated with increasedactive Na+ transport and lungedema clearance across the rat alveolar epithelium in a model ofproliferative lung injury. Thus we tested whether administration ofaerosolized EGF to rat lungs would increase activeNa+ transport and lung liquidclearance. Sixteen adult Sprague-Dawley male rats were randomized tothree groups. To a group of six rats, an aerosol generated from 20 µgof EGF in saline was delivered to the lungs, to a second group of fiverats only aerosolized saline was delivered, and a third group of fiverats without treatment served as the control. Forty-eight hourspostaerosolization of rat lungs with EGF there was an ~40% increasein active Na+ transport and lungliquid clearance compared with control rats, in the absence of changesin22Na+,[3H]mannitol, andalbumin permeabilities. TheNa+-K+-ATPaseactivity in AT2 cells harvested from these lungs was increased in ratsthat received aerosolized EGF compared with AT2 cells from both controlrats and rats receiving aerosolized saline. These results support thehypothesis that in vivo delivery of EGF aerosols upregulates alveolarepithelialNa+-K+-ATPaseand increases lung liquid clearance in rats.

  相似文献   

12.
We investigated the mechanisms by which serine proteases alter lung fluid clearance in rat lungs and vectorial ion transport in airway and alveolar epithelial cells. Inhibition of endogenous protease activity by intratracheal instillation of soybean trypsin inhibitor (SBTI) or alpha(1)-antitrypsin decreased amiloride-sensitive lung fluid clearance across rat fluid-filled lungs; instillation of trypsin partially restored this effect. Gelatin zymography demonstrated SBTI-inhibitable trypsin-like activity in rat lung lavage fluid. Apical trypsin and human neutrophil elastase, but not agonists of protease activated receptors, increased Na(+) and Cl(-) short-circuit currents (I(sc)) and transepithelial resistance (R(TE)) across human bronchial and nasal epithelial cells and rat alveolar type II cells, mounted in Ussing chambers, for at least 2 h. The increase in I(sc) was fully reversed by amiloride and glibenclamide. The increase in R(TE) was not prevented by ouabain, suggesting that trypsin decreased paracellular conductance. Apical trypsin also induced a transient increase in intracellular Ca(2+) in human airway cells; treatment of these cells with BAPTA-AM mitigated the trypsin-induced increases of intracellular Ca(2+) and of I(sc) and R(TE). Increasing intracellular Ca(2+) in airway cells with either ionomycin or thapsigargin reproduced the increase in I(sc), whereas inhibitors of phospholipase C (PLC) prevented the increases in both Ca(2+) and I(sc). These data indicate trypsin-like proteases and elastase, either present in lung cells or released by inflammatory cells into the alveolar space, play an important role in the clearance of alveolar fluid by increasing ion transport and paracellular resistance via a PLC-initiated rise of intracellular Ca(2+).  相似文献   

13.
Magnetic resonance elastography (MRE) is a MR imaging method capable of spatially resolving the intrinsic mechanical properties of normal lung parenchyma. We tested the hypothesis that the mechanical properties of edematous lung exhibit local properties similar to those of a fluid-filled lung at transpulmonary pressures (P(tp)) up to 25 cm H(2)O. Pulmonary edema was induced in anesthetized female adult Sprague-Dawley rats by mechanical ventilation to a pressure of 40 cm H(2)O for ~30 min. Prior to imaging the wet weight of each ex vivo lung set was measured. MRE, high-resolution T(1)-weighted spin echo and T(2)* gradient echo data were acquired at each P(tp) for both normal and injured ex vivo lungs. At P(tp)s of 6 cm H(2)O and greater, the shear stiffness of normal lungs was greater than injured lungs (P ≤ 0.0003). For P(tp)s up to 12 cm H(2)O, shear stiffness was equal to 1.00, 1.07, 1.16, and 1.26 kPa for the injured and 1.31, 1.89, 2.41, and 2.93 kPa for normal lungs at 3, 6, 9, and 12 cm H(2)O, respectively. For injured lungs MRE magnitude signal and shear stiffness within regions of differing degrees of alveolar flooding were calculated as a function of P(tp). Differences in shear stiffness were statistically significant between groups (P < 0.001) with regions of lower magnitude signal being stiffer than those of higher signal. These data demonstrate that when the alveolar space filling material is fluid, MRE-derived parenchymal shear stiffness of the lung decreases, and the lung becomes inherently softer compared with normal lung.  相似文献   

14.
Hypoxic pulmonary vasoconstriction (HPV) preserves systemic arterial oxygenation during lung injury by diverting blood flow away from poorly ventilated lung regions. Ventilator-induced lung injury (VILI) is characterized by pulmonary inflammation, lung edema, and impaired HPV leading to systemic hypoxemia. Studying mice congenitally deficient in inducible nitric oxide synthase (NOS2) and wild-type mice treated with a selective NOS2 inhibitor, L-N(6)-(1-iminoethyl)lysine (L-NIL), we investigated the contribution of NOS2 to the impairment of HPV in anesthetized mice subjected to 6 h of either high tidal volume (HV(T)) or low tidal volume (LV(T)) ventilation. HPV was estimated by measuring the changes of left lung pulmonary vascular resistance (LPVR) in response to left mainstem bronchus occlusion (LMBO). LMBO increased the LPVR similarly in wild-type, NOS2(-/-), and wild-type mice treated with L-NIL 30 min before commencing 6 h of LV(T) ventilation (96% +/- 30%, 103% +/- 33%, and 80% +/- 16%, respectively, means +/- SD). HPV was impaired in wild-type mice subjected to 6 h of HV(T) ventilation (23% +/- 16%). In contrast, HPV was preserved after 6 h of HV(T) ventilation in NOS2(-/-) and wild-type mice treated with L-NIL either 30 min before or 6 h after commencing HV(T) ventilation (66% +/- 22%, 82% +/- 29%, and 85% +/- 16%, respectively). After 6 h of HV(T) ventilation and LMBO, systemic arterial oxygen tension was higher in NOS2(-/-) than in wild-type mice (192 +/- 11 vs. 171 +/- 17 mmHg; P < 0.05). We conclude that either congenital NOS2 deficiency or selective inhibition of NOS2 protects mice from the impairment of HPV occurring after 6 h of HV(T) ventilation.  相似文献   

15.
Hypoxia inhibits Na and lung fluid reabsorption, which contributes to the formation of pulmonary edema. We tested whether dexamethasone prevents hypoxia-induced inhibition of reabsorption by stimulation of alveolar Na transport. Fluid reabsorption, transport activity, and expression of Na transporters were measured in hypoxia-exposed rats and in primary alveolar type II (ATII) cells. Rats were treated with dexamethasone (DEX; 2 mg/kg) on 3 consecutive days and exposed to 10% O(2) on the 2nd and 3rd day of treatment to measure hypoxia effects on reabsorption of fluid instilled into lungs. ATII cells were treated with DEX (1 muM) for 3 days before exposure to hypoxia (1.5% O(2)). In normoxic rats, DEX induced a twofold increase in alveolar fluid clearance. Hypoxia decreased reabsorption (-30%) by decreasing its amiloride-sensitive component; pretreatment with DEX prevented the hypoxia-induced inhibition. DEX increased short-circuit currents (ISC) of ATII monolayers in normoxia and blunted hypoxic transport inhibition by increasing the capacity of Na(+)-K(+)-ATPase and epithelial Na(+) channels (ENaC) and amiloride-sensitive ISC. DEX slightly increased the mRNA of alpha- and gamma-ENaC in whole rat lung. In ATII cells from DEX-treated rats, mRNA of alpha(1)-Na(+)-K(+)-ATPase and alpha-ENaC increased in normoxia and hypoxia, and gamma-ENaC was increased in normoxia only. DEX stimulated the mRNA expression of alpha(1)-Na(+)-K(+)-ATPase and alpha-, beta-, and gamma-ENaC of A549 cells in normoxia and hypoxia (1.5% O(2)) when DEX treatment was begun before or during hypoxic exposure. These results indicate that DEX prevents inhibition of alveolar reabsorption by hypoxia and stimulates the expression of Na transporters even when it is applied in hypoxia.  相似文献   

16.
Salt-inducible kinase 1 (SIK1) in epithelial cells mediates the increases in active sodium transport (Na+, K+-ATPase-mediated) in response to elevations in the intracellular concentration of sodium. In lung alveolar epithelial cells increases in active sodium transport in response to β-adrenergic stimulation increases pulmonary edema clearance. Therefore, we sought to determine whether SIK1 is present in lung epithelial cells and to examine whether isoproterenol-dependent stimulation of Na+, K+-ATPase is mediated via SIK1 activity. All three SIK isoforms were present in airway epithelial cells, and in alveolar epithelial cells type 1 and type 2 from rat and mouse lungs, as well as from human and mouse cell lines representative of lung alveolar epithelium. In mouse lung epithelial cells, SIK1 associated with the Na+, K+-ATPase α-subunit, and isoproterenol increased SIK1 activity. Isoproterenol increased Na+, K+-ATPase activity and the incorporation of Na+, K+-ATPase molecules at the plasma membrane. Furthermore, those effects were abolished in cells depleted of SIK1 using shRNA, or in cells overexpressing a SIK1 kinase-deficient mutant. These results provide evidence that SIK1 is present in lung epithelial cells and that its function is relevant for the action of isoproterenol during regulation of active sodium transport. As such, SIK1 may constitute an important target for drug discovery aimed at improving the clearance of pulmonary edema.  相似文献   

17.
Molecular mechanisms of the inflammatory reaction in hypoxia-induced lung injury are not well defined. Therefore, effects of alveolar hypoxia were studied in rat lungs, exposing rats to 10% oxygen over periods of 1, 2, 4, 6, and 8 h. An increase in the number of macrophages in bronchoalveolar lavage fluid of hypoxic animals was shown between 1 and 8 h. Extravasation of albumin was enhanced after 1 h and remained increased throughout the study period. NF-kappaB-binding activity as well as mRNA for TNF-alpha, macrophage inflammatory protein (MIP)-1beta, and monocyte chemoattractant protein (MCP)-1 were increased within the first 2 h of exposure to hypoxia. Hypoxia-inducible factor (HIF)-1alpha and intercellular adhesion molecule (ICAM)-1 mRNA were upregulated between 1 and 6 h. Elimination of alveolar macrophages by intratracheal application of liposome-encapsulated clodronate led to a decreased expression of NF-kappaB binding activity, HIF-1alpha, TNF-alpha, ICAM-1, and MIP-1beta. In summary, alveolar hypoxia induced macrophage recruitment, an increase in albumin leakage, and enhanced expression of inflammatory mediators, which were mainly macrophage dependent. Alveolar macrophages appear to have a prominent role in the inflammatory response in hypoxia-induced lung injury and the related upregulation of inflammatory mediators.  相似文献   

18.
Dopamine increases lung fluid clearance. This is partly due to activation of basolateral Na-K-ATPase. However, activation of Na-K-ATPase by itself is unlikely to produce large changes in transepithelial transport. Therefore, we examined apical and basolateral dopamine's effect on apical, highly selective sodium channels [epithelial sodium channels (ENaC)] in monolayers of an alveolar type 2 cell line (L2). Dopamine increased channel open probability (P(o)) without changing the unitary current. The D(1) receptor blocker SCH-23390 blocked the dopamine effect, but the D(2) receptor blocker sulpiride did not. The dopamine-mediated increase in ENaC activity was not a secondary effect of dopamine stimulation of Na-K-ATPase, since ouabain applied to the basolateral surface to block the activity of Na-K-ATPase did not alter dopamine-mediated ENaC activity. Protein kinase A (PKA) was not responsible for dopamine's effect since a PKA inhibitor, H89, did not reduce dopamine's effect. However, cpt-2-O-Me-cAMP, which selectively binds and activates EPAC (exchange protein activated by cAMP) but not PKA, increased ENaC P(o). An Src inhibitor, PP2, and the phosphatidylinositol-3-kinase inhibitor, LY-294002, blocked dopamine's effect on ENaC. In addition, an MEK blocker, U0126, an inhibitor of phospholipase A(2), and a protein phosphatase inhibitor also blocked the effect of dopamine on ENaC P(o). Finally, since the cAMP-EPAC-Rap1 pathway also activates DARPP32 (32-kDa dopamine response protein phosphatase), we confirmed that dopamine phosphorylates DARPP32, and okadaic acid, which blocks phosphatases (DARPP32), also blocks dopamine's effect. In summary, dopamine increases ENaC activity by a cAMP-mediated alternative signaling pathway involving EPAC and Rap1, signaling molecules usually associated with growth-factor-activated receptors.  相似文献   

19.
Late in gestation, the developing air space epithelium switches from chloride and fluid secretion to sodium and fluid absorption. Absorption requires Na-K-ATPase acting in combination with apical sodium entry mechanisms. Hypothyroidism inhibits perinatal fluid resorption, and thyroid hormone [triiodothyronine (T3)] stimulates adult alveolar epithelial cell (AEC) Na-K-ATPase. This study explored the developmental regulation of Na-K-ATPase by T3 in fetal rat distal lung epithelial (FDLE) cells. T3 increased Na-K-ATPase activity in primary FDLE cells from gestational day 19 [both primary FDLE cells at embryonic day 19 (E19) and the cell line FD19 derived from FDLE cells at E19]. However, T3 did not increase the Na-K-ATPase activity in less mature FDLE cells, including primary E17 and E18 FDLE cells and the cell line FD18 (derived from FDLE cells at E18). Subsequent experiments assessed the T3 signal pathway to define whether it was similar in the late FDLE and adult AEC and to determine the site of the switch in responsiveness to T3. As in adult AEC, in the FD19 cell line, the phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin blocked the T3-induced increase in Na-K-ATPase activity and plasma membrane quantity. T3 caused a parallel increase in phosphorylation of Akt at Ser473 in FDLE cells from E19, but not from E17 or E18. In the FD18 cell line, transient expression of a constitutively active mutant of the PI3K catalytic p110 subunit significantly augmented the Na-K-ATPase activity and the cell surface expression of Na-K-ATPase alpha(1) protein. In conclusion, FDLE cells from E17 and E18 lacked T3-sensitive Na-K-ATPase activity but acquired this response at E19. The developmental stimulation of Na-K-ATPase by T3 in rat FDLE cells requires activation of PI3K, and the acquisition of T3 responsiveness may be at PI3K or upstream in the signaling pathway.  相似文献   

20.
Widespread vascular endothelial injury is the major mechanism for multiorgan dysfunction in sepsis. Following this process, the permeability of the alveolar capillaries is augmented with subsequent increase in water content and acute respiratory distress syndrome (ARDS). Nevertheless, the role of alveolar epithelium is less known. Therefore, we examined alveolar fluid clearance (AFC) using isolated perfused rat lung model in septic rats without ARDS. Sepsis was induced by ligating and puncturing the cecum with a 21-gauge needle. AFC was examined 24 and 48 h later. The expression of Na-K-ATPase proteins was examined in type II alveolar epithelial cells (ATII) and basolateral membrane (BLM). The rate of AFC in control rats was 0.51 ± 0.02 ml/h (means ± SE) and decreased to 0.3 ± 0.02 and 0.33 ± 0.03 ml/h in 24 and 48 h after sepsis induction, respectively (P < 0.0001). Amiloride, significantly decreased AFC in sepsis; conversely, isoproterenol reversed the inhibitory effect of sepsis. The alveolar-capillary barrier in septic rats was intact; therefore the finding of increased extravascular lung water in early sepsis could be attributed to accumulation of protein-poor fluid. The expression of epithelial sodium channel and Na-K-ATPase proteins in whole ATII cells was not different in both cecal ligation and puncture and control groups; however, the abundance of Na-K-ATPase proteins was significantly decreased in BLMs of ATII cells in sepsis. Early decrease in AFC in remote sepsis is probably related to endocytosis of the Na-K-ATPase proteins from the cell plasma membrane into intracellular pools, with resultant inhibition of active sodium transport in ATII cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号