首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although guanosine 3':5'-monophosphate (cyclic GMP)-dependent protein kinase (protein kinase G) which was partially purified from silkworm pupae was not dissociated by cyclic GMP into catalytic and regulatory subunits as described for adenosine 3':5'-monophosphate-dependent protein kinase (protein kinase A) (Takai, Y., Nakaya, S., Inoue, M., Kishimoto, A., Nishiyama, K., Yamamura, H., and Nishizuka, Y. (1976) J. Biol. Chem. 251, 1481-1487), limited proteolysis with trypsin resulted in the formation of catalytic and cyclic GMP-binding fragments which showed molecular weights of approximately 3.4 X 10(4) and 3.6 X 10(4), respectively (the molecular weight of native protein kinase G was 1.4 X 10(5)). The catalytic fragment did not bind cyclic GMP and was fully active in the absence of the cyclic nucleotide. The fragment did not show an absolute requirement for a sulfhydryl compound and high concentrations of Mg2+ (50 to 100 mM), both of which were necessary for the maximal activation of native protein kinase G. The catalytic fragment was not inhibited by the cyclic GMP-binding fragment nor by the regulatory subunit of protein kinase A. Inversely, the cyclic GMP-binding fragment was unable to inhibit the catalytic subunit of protein kinase A. Protein inhibitor, which was described for protein kinase A, was inert for the catalytic fragment.  相似文献   

2.
D Sondhi  P A Cole 《Biochemistry》1999,38(34):11147-11155
Csk (C-terminal Src kinase) is a protein tyrosine kinase that phosphorylates Src family member C-terminal tails, resulting in downregulation of Src family members. It is composed of three principal domains: an SH3 (Src homology 3) domain, an SH2 (Src homology 2) domain, and a catalytic domain. The impact of the noncatalytic domains on kinase catalysis was investigated. The Csk catalytic domain was expressed in Escherichia coli as a recombinant glutathione S-transferase-fusion protein and demonstrated to have 100-fold reduced catalytic efficiency. Production of the catalytic domain by proteolysis of full-length Csk afforded a similar rate reduction. This suggested that the reduction in catalytic efficiency of the recombinant catalytic domain was intrinsic to the sequence and not an artifact related to faulty expression. This rate reduction was similar for peptide and protein substrates and was due almost entirely to a reduced k(cat) rather than to effects on substrate K(m)s. Viscosity experiments on the catalytic fragment kinase reaction demonstrated that the chemical (phosphoryl transfer) step had a reduced rate. While the Csk SH2 domain had no intermolecular effect on the kinase activity of the Csk catalytic domain, the SH3 domain and SH3-SH2 fragment led to a partial rescue (4-5-fold) of the lost kinase activity. This rescue was not achieved with two other SH3 domains (lymphoid cell kinase, Abelson kinase). The extrapolated K(d) of interaction for the Csk catalytic domain with the Csk SH3 domain was 2.2 microM and that of the Csk catalytic domain with the Csk SH3-SH2 fragment was 8.8 microM. Taken together, these findings suggest that there is likely an intramolecular interaction between the catalytic and SH3 domains in full-length Csk that is important for efficient catalysis. By employing a Csk SH3 specific type II polyproline helix peptide and carrying out site-directed mutagenesis, it was established that the SH3 surface that interacts with the catalytic domain was distinct from the surface that binds type II polyproline helix peptides. This finding suggests a novel mode of protein-protein interaction for an SH3 domain. The implications for Csk substrate selectivity, regulation, and function are discussed.  相似文献   

3.
Liver glycogen phosphorylase associated with the glycogen pellet was activated by a MgATP-dependent process. This activation was reduced by 90% by ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid, not affected by the inhibitor of the cAMP-dependent protein kinase, and increased 2.5-fold by the catalytic subunit of cAMP-dependent protein kinase. Low levels of free Ca2+ (8 x 10(-8) M) completely prevented the effects of the chelator. The activation of phosphorylase by MgATP was shown not to be due to formation of AMP. DEAE-cellulose chromatography of the glycogen pellet separated phosphorylase from phosphorylase kinase. The isolated phosphorylase was no longer activated by MgATP in the presence or absence of the catalytic subunit of cAMP-dependent protein kinase. The isolated phosphorylase kinase phosphorylated and activated skeletal muscle phosphorylase b and the activation was increased 2- to 3-fold by the catalytic subunit of cAMP-dependent protein kinase. Mixing the isolated phosphorylase and phosphorylase kinase together restored the effects of MgATP and the catalytic subunit of cAMP-dependent protein kinase on phosphorylase activity. These findings demonstrate that the phosphorylase kinase associated with liver glycogen has regulatory features similar to those of muscle phosphorylase kinase.  相似文献   

4.
It has been proposed that the active centre of cyclic AMP-dependent protein kinase contains an arginine-recognition site, which is considered to be essential for the function of the catalytic subunit of the kinase [Matsuo, Huang & Huang (1978) Biochem. J.173, 441-447]. The catalytic subunit can be inactivated by 3-(3-dimethylaminopropyl)-1-ethylcarbodi-imide and glycine ethyl ester at pH6.5. The enzyme can be protected from inactivation by preincubation with histone, a protein substrate of the enzyme. On the other hand, ATP, which also serves as a protein kinase substrate, does not afford protection. Polyarginine, a competitive inhibitor of protein kinase, which is known from kinetic studies to interact specifically with the arginine-recognition site, partially protects the catalytic subunit from inactivation by 3-(3-dimethylaminopropyl)-1-ethylcarbodi-imide. These results lead to the conclusion that the site of modification by carbodi-imide/glycine ethyl ester is most likely located at the arginine-recognition site of the active centre. A value of 1.7+/-0.2 (mean+/-s.d.) mol of carboxy groups per mol of catalytic subunit has been obtained for the number of essential carboxy groups for the function of protein kinase; a complete chemical modification of these essential carboxy groups results in total loss of catalytic activity. Finally, we have identified the essential carboxy group in the catalytic subunit of cyclic AMP-dependent protein kinase as being derived from glutamate residues. This is achieved by a three-step procedure involving an extensive proteolytic digestion of the [1-(14)C]glycine ethyl ester-modified enzyme and two successive high-voltage electrophoreses of the hydrolysate. It is concluded that 1.7mol of glutamyl carboxy groups per mol of catalytic subunit may be considered a component of the arginine-recognition site in the active centre of cyclic AMP-dependent protein kinase.  相似文献   

5.
Two 8.5-S protein kinases (ATP : protein phosphotransferase EC 2.7.1.37) and one 6.6-S protein kinase were purified 500--1000-fold from the acid-soluble fraction of brown adipose tissue. The catalytic properties of the kinases were similar. Each kinase was activated by cyclic AMP and had two components of cyclic AMP binding. In the presence of 200 nM cyclic AMP, undissociated kinase activity sedimented at 7.7 or 5.5 S. Free catalytic activity (3.2 S) could be detected but was unstable. Free regulatory units could not be detected. The 8.5-S protein kinase was dissociated by freezing and thawing to a 7.7-S variety with loss of the higher affinity component of binding. The 7.7-S kinase was sedimented through linear gradients of sucrose containing different concentrations of cyclic AMP. At each concentration, kinase activity lost from the holoenzyme peak (% of original) was identical with the amount of cyclic AMP bound at equilibrium (% oof maximum). Similar experiments on the 8.5-S kinase showed that the binding component with higher affinity was not associated with the release of catalytic activity. The results were consistent with the propostal that the kinases isolated contained one more cyclic AMP binding subunit than catalytic subunit (3 : 2 for 8.5 S and 2 : 1 for 6.6 S) and that this extra subunit was released to give an equal number of subunits of each type before catalytic activity was liberated.  相似文献   

6.
Following the induction of apoptosis in mammalian cells, protein kinase C zeta (PKC zeta) is processed between the regulatory and catalytic domains by caspases, which increases its kinase activity. The catalytic domain fragments of PKC isoforms are considered to be constitutively active, because they lack the autoinhibitory amino-terminal regulatory domain, which includes a pseudosubstrate segment that plugs the active site. Phosphorylation of the activation loop at Thr(410) is known to be sufficient to activate the kinase function of full-length PKC zeta, apparently by inducing a conformational change, which displaces the amino-terminal pseudosubstrate segment from the active site. Amino acid substitutions for Thr(410) of the catalytic domain of PKC zeta (CAT zeta) essentially abolished the kinase function of ectopically expressed CAT zeta in mammalian cells. Similarly, substitution of Ala for a Phe of the docking motif for phosphoinositide-dependent kinase-1 prevented activation loop phosphorylation and abolished the kinase activity of CAT zeta. Treatment of purified CAT zeta with the catalytic subunit of protein phosphatase 1 decreased activation loop phosphorylation and kinase activity. Recombinant CAT zeta from bacteria lacked detectable kinase activity. Phosphoinositide-dependent kinase-1 phosphorylated the activation loop and activated recombinant CAT zeta from bacteria. Treatment of HeLa cells with fetal bovine serum markedly increased the phosphothreonine 410 content of CAT zeta and stimulated its kinase activity. These findings indicate that the catalytic domain of PKC zeta is intrinsically inactive and dependent on the transphosphorylation of the activation loop.  相似文献   

7.
PKN is a fatty acid- and Rho GTPase-activated protein kinase whose catalytic domain in the carboxyl terminus is homologous to those of protein kinase C (PKC) family members. The amino terminal region of PKN is suggested to function as a regulatory domain, since tryptic cleavage or the binding of Rho GTPase to this region results in protein kinase activation of PKN. The structural basis for the regulation of PKN was investigated by analyzing the activity of a series of deletion/site-directed mutants expressed in insect cells. The amino-terminally truncated form of PKN (residue 455-942) showed low basal activity similar to that of the wild-type enzyme, and was arachidonic acid-dependent. However, further deletion (residue 511-942) resulted in a marked increase in the basal activity and a decrease in the arachidonic acid dependency. A (His)(6)-tagged protein comprising residues 455-511 of PKN (designated His-Ialpha) inhibited the kinase activity of the catalytic fragment of PKN in a concentration-dependent manner in competition with substrate (K(i) = 0.6+/-0.2 microM). His-Ialpha also inhibited the activity of the catalytic fragment of PRK2, an isoform of PKN, but had no inhibitory effect on protein kinase A or protein kinase Cdelta. The IC(50) value obtained in the presence of 40 microM arachidonic acid was two orders of magnitude greater than that in the absence of the modifier. These results indicate that this protein fragment functions as a specific inhibitor of PKN and PRK2, and that arachidonic acid relieves the catalytic activity of wild-type PKN from autoinhibition by residues 455-511 of PKN. Autophosphorylation of wild-type PKN increased the protein kinase activity, however, substitution of Thr64, Ser374, or Thr531 in the regulatory region of PKN with alanine, abolished this effect. Substitution of Thr774 in the activation loop of the catalytic domain of PKN with alanine completely abolished the protein kinase activity. These results suggest that these phosphorylation sites are also important in the regulation of the PKN kinase activity. Potential differences in the mechanism of activation between the catalytic regions of PKN and PRK2 are also discussed.  相似文献   

8.
Smooth muscle myosin light chain kinase is phosphorylated in vitro by protein kinase C purified from human platelets. When myosin light chain kinase which has calmodulin bound is phosphorylated by protein kinase C, 0.8-1.1 mol of phosphate is incorporated per mol of myosin light chain kinase with no effect on its enzyme activity. Phosphorylation of myosin light chain kinase with no calmodulin bound results in the incorporation of 2-2.4 mol of phosphate and significantly decreases the rate of myosin light chain kinase activity. The decrease in myosin light chain kinase activity is due to a 3.3-fold increase in the concentration of calmodulin necessary for the half-maximal activation of myosin light chain kinase. The sites phosphorylated by protein kinase C and the catalytic subunit of cAMP-dependent protein kinase were compared by two-dimensional peptide mapping following extensive tryptic digestion of phosphorylated myosin light chain kinase. The single site phosphorylated by protein kinase C when calmodulin is bound to myosin light chain kinase (site 3) is different from that phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (site 1). The additional site that is phosphorylated by protein kinase C when calmodulin is not bound appears to be the same site phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (site 2). These studies confirm the important role of site 2 in binding calmodulin to myosin light chain kinase. Sequential studies using both protein kinase C and the catalytic subunit of cAMP-dependent protein kinase suggest that the phosphorylation of site 1 also plays a part in decreasing the affinity of myosin light chain kinase for calmodulin.  相似文献   

9.
Phosphorylation of calpain II (or its inhibitor) by the catalytic subunit of cyclic AMP-dependent protein kinase (A-PK), cyclic GMP-dependent protein kinase (G-PK), and protein kinase C (PK-C) was analyzed by SDS-polyacrylamide gel electrophoresis and autoradiography. Among these protein kinases, the catalytic subunit of A-PK exhibited the strongest phosphorylations of both calpain II and its inhibitor. Arachidonic acid and staurosporine effectively inhibited phosphorylation regardless the type of kinase tested. Despite its lack of effect on the phosphorylation of calpain II by the catalytic subunit of A-PK, sphingosine moderately enhanced the phosphorylation of calpain II by G-PK. Other agents, including phosphatidylethanolamine, phosphatidylinositol and 1, 2-dioleoyl-sn-glycerol, had no significant effect.  相似文献   

10.
The mechanism of inhibition of adenosine 3':5'-monophosphate (cyclic AMP)-dependent protein kinase was studied using a protein inhibitor isolated by a non-denaturing procedure from bovine heart. This protein inhibitor interacts with the catalytic subunit of protein kinase and binds to some substrates of the kinase. Protein kinase activity can also be inhibited by polyanions which, like the protein inhibitor, bind to basic substrates but do not bind to the catalytic subunit of protein kinase. Peptides such as L-lysyl-L-tyrosyl-L-threonine that resemble the phosphate accepting site of protein kinase substrates competitively inhibit phosphorylation of histone. Protein kinase activity can thus be inhibited in vitro by interaction of the protein inhibitor with substrates, and/or the catalytic subunit of the kinase, by competition of substrate analogs with "natural" substrates and by direct interaction of polyanions with basic protein substrates for the phosphotransferase reaction.  相似文献   

11.
Chen H  Nystrom FH  Dong LQ  Li Y  Song S  Liu F  Quon MJ 《Biochemistry》2001,40(39):11851-11859
Phosphoinositide-dependent kinase-1 (PDK-1) is a serine-threonine kinase downstream from PI 3-kinase that phosphorylates and activates other important kinases such as Akt that are essential for cell survival and metabolism. Previous reports have suggested that PDK-1 has constitutive catalytic activity that is not regulated by stimulation of cells with growth factors. We now show that insulin stimulation of NIH-3T3(IR) cells or rat adipose cells may significantly increase the intrinsic catalytic activity of PDK-1. Insulin treatment of NIH-3T3(IR) fibroblasts overexpressing PDK-1 increased both phosphorylation of recombinant PDK-1 in intact cells and PDK-1 kinase activity in an immune-complex kinase assay. Insulin stimulation of rat adipose cells also increased catalytic activity of endogenous PDK-1 immunoprecipitated from the cells. Both insulin-stimulated phosphorylation and activity of PDK-1 were inhibited by wortmannin and reversed by treatment with the phosphatase PP-2A. A mutant PDK-1 with a disrupted PH domain (W538L) did not undergo phosphorylation or demonstrate increased kinase activity in response to insulin stimulation. Similarly, a PDK-1 phosphorylation site point mutant (S244A) had no increase in kinase activity in response to insulin stimulation. Thus, the insulin-stimulated increase in PDK-1 catalytic activity may involve PI 3-kinase- and phosphorylation-dependent mechanisms. We conclude that the basal constitutive catalytic activity of PDK-1 in NIH-3T3(IR) cells and rat adipose cells can be significantly increased upon insulin stimulation.  相似文献   

12.
The C-terminal regulatory segment of smooth muscle myosin light chain kinase folds back on its catalytic core to inhibit kinase activity. This regulatory segment consists of autoinhibitory residues linking the catalytic core to the calmodulin-binding sequence and perhaps additional C-terminal residues including an immunoglobulin-like motif. However, mutational and biochemical analyses showed no specific involvement of residues C-terminal to the calmodulin-binding sequence. To obtain additional insights on the proposed mechanisms for autoinhibition and Ca(2+)/calmodulin activation of the kinase, the polypeptide backbone chain of myosin light chain kinase was cleaved by genetic means to produce N- and C-terminal protein fragments. The N-terminal fragment containing the catalytic core was catalytically inactive when expressed alone. Co-expression of the N-terminal fragment with the C-terminal fragment containing the regulatory segment restored kinase activity. Deletion of the autoinhibitory linker residues without or with the calmodulin-binding sequence prevented restoration of kinase activity. In the presence or absence of Ca(2+)/calmodulin, regulatory segment binding occurred through the linker region connecting the catalytic core to the calmodulin-binding sequence. Collectively, these results indicate that residues C-terminal to the calmodulin-binding sequence (including the immunoglobulin-like motif) are not functional components of the regulatory segment. Furthermore, the principal autoinhibitory motif is contained in the sequence linking the catalytic core of myosin light chain kinase to the calmodulin-binding sequence.  相似文献   

13.
The activation of protein kinase A (cyclic adenosine monophosphate-dependent protein kinase) by cyclic adenosine monophosphate is believed to play an important role in regulating the growth and differentiation of Trypanosoma cruzi. A PCR using degenerate oligonucleotide primers against conserved motifs in the VIb and VIII subdomains of the ACG family of serine/threonine protein kinases was utilised to amplify regions corresponding to the parasite homologue of the protein kinase A catalytic subunit. This putative protein kinase A fragment was used to isolate the entire gene from T. cruzi genomic libraries. The deduced 329 amino acid sequence of this gene contained all of the signature motifs of known protein kinase A catalytic subunit proteins. The recombinant protein expressed in Escherichia coli was shown to phosphorylate Kemptide, a synthetic peptide substrate of protein kinase A, in a protein kinase inhibitor (PKI)-inhibitory manner. Immunoprecipitation with polyclonal antisera raised against recombinant protein of this gene was able to pull-down PKI-inhibitory phosphotransferase activity from epimastigote lysates. Immunoblot and Northern blot analyses, in combination with enzyme activity assays, revealed that this gene was a stage-regulated enzyme in T. cruzi with higher levels and activity being present in epimastigotes compared with amastigotes or trypomastigotes. Overall these studies indicate that the cloned gene encodes an authentic protein kinase A catalytic subunit from T. cruzi and are the first demonstration of PKI-inhibitory phosphotransferase activity in an expressed protozoan protein kinase A catalytic subunit.  相似文献   

14.
Casein kinase II is an ubiquitous serine-threonine kinase whose functional significance and regulation in the living cell are not clearly understood. The native enzyme has an oligomeric structure made of two different (alpha and beta) subunits with an alpha 2 beta 2 stoichiometry. To facilitate the study of the structure-activity relationship of the kinase, we have expressed its isolated subunits in a baculovirus-directed insect cell expression system. The resulting isolated recombinant alpha subunit exhibited a protein kinase catalytic activity, in agreement with previous observations [Cochet, C., & Chambaz, E. M. (1983) J. Biol. Chem. 258, 1403-1406]. Coinfection of insect cells with recombinant viruses encoding the two kinase subunits resulted in the biosynthesis of a functional enzyme. Active recombinant oligomeric kinase was purified to near homogeneity with a yield of about 5 mg of enzymatic protein per liter, showing that, in coinfected host cells, synthesis was followed, at least in part, by recombination of the two subunits with an alpha 2 beta 2 stoichiometry. The catalytic properties of the recombinant enzyme appeared highly similar to those previously observed for casein kinase II purified from bovine tissue. Access to the isolated subunits and to their alpha 2 beta 2 association disclosed that the beta subunit is required for optimal catalytic activity of the kinase. In addition, the beta subunit is suggested to play an essential role in the regulated activity of the native casein kinase II. This is clearly illustrated by the observation of the effect of spermine which requires the presence of the beta subunit to stimulate the kinase catalytic activity which is borne by the alpha subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Pantothenate kinase generates 4′‐phosphopantothenate in the first and rate‐determining step of coenzyme A (CoA) biosynthesis. The human genome encodes three well‐characterized and nearly identical pantothenate kinases (PANK1‐3) plus a putative bifunctional protein (PANK4) with a predicted amino‐terminal pantothenate kinase domain fused to a carboxy‐terminal phosphatase domain. Structural and phylogenetic analyses show that all active, characterized PANKs contain the key catalytic residues Glu138 and Arg207 (HsPANK3 numbering). However, all amniote PANK4s, including human PANK4, encode Glu138Val and Arg207Trp substitutions which are predicted to inactivate kinase activity. Biochemical analysis corroborates bioinformatic predictions—human PANK4 lacks pantothenate kinase activity. Introducing Glu138Val and Arg207Trp substitutions to the human PANK3 and plant PANK4 abolished their robust pantothenate kinase activity. Introducing both catalytic residues back into human PANK4 restored kinase activity, but only to a low level. This result suggests that epistatic changes to the rest of the protein already reduced the kinase activity prior to mutation of the catalytic residues in the course of evolution. The PANK4 from frog, an anamniote living relative encoding the catalytically active residues, had only a low level of kinase activity, supporting the view that HsPANK4 had reduced kinase activity prior to the catalytic residue substitutions in amniotes. Together, our data show that human PANK4 is a pseudo‐pantothenate kinase—a catalytically deficient variant of the catalytically active PANK4 found in plants and fungi. The Glu138Val and Arg207Trp substitutions in amniotes (HsPANK3 numbering) completely deactivated the pantothenate kinase activity that had already been reduced by prior epistatic mutations.  相似文献   

16.
Csk (C-terminal Src kinase), a protein tyrosine kinase, consisting of the Src homology 2 and 3 (SH2 and SH3) domains and a catalytic domain, phosphorylates the C-terminal tail of Src-family members, resulting in downregulation of the Src family kinase activity. The Src family kinases share 37 % homology with Csk but, unlike Src-family kinases, the catalytic domain of Csk alone is weakly active and can be stimulated in trans by interacting with the Csk-SH3 domain, suggesting a mode of intradomain regulation different from that of Src family kinases. The structural determinants of this intermolecular interaction were studied by nuclear magnetic resonance (NMR) and site-directed mutagenesis techniques. Chemical shift perturbation of backbone nuclei (H' and (15)N) has been used to map the Csk catalytic domain binding site on the Csk-SH3. The experimentally determined interaction surface includes three structural elements: the N-terminal tail, a small part of the RT-loop, and the C-terminal SH3-SH2 linker. Site-directed mutagenesis revealed that mutations in the SH3-SH2 linker of the wild-type Csk decrease Csk kinase activity up to fivefold, whereas mutations in the RT-loop left Csk kinase activity largely unaffected. We conclude that the SH3-SH2 linker plays a major role in the activation of the Csk catalytic domain.  相似文献   

17.
Transient receptor potential (TRP) channels modulate calcium levels in eukaryotic cells in response to external signals. A novel transient receptor potential channel has the ability to phosphorylate itself and other proteins on serine and threonine residues. The catalytic domain of this channel kinase has no detectable sequence similarity to classical eukaryotic protein kinases and is essential for channel function. The structure of the kinase domain, reported here, reveals unexpected similarity to eukaryotic protein kinases in the catalytic core as well as to metabolic enzymes with ATP-grasp domains. The inclusion of the channel kinase catalytic domain within the eukaryotic protein kinase superfamily indicates a significantly wider distribution for this group of signaling proteins than suggested previously by sequence comparisons alone.  相似文献   

18.
Sialoglycoproteins play a key role in both brain development and neuronal plasticity with their sialylation state being controlled by the sialyltransferase (STN) family of enzymes. In this study, we have determined the role of specific kinase enzymes in the expression and catalytic activity of the alpha2,6 STN (ST6N) isozyme. The catalytic activity was moderately decreased following the inhibition of GSK3beta with LiCl. However, there was a significant increase in catalytic activity following activation of protein kinase C (PKC) by phorbol ester. There was no change in the expression levels of the enzyme protein following any of the treatments. The changes in enzyme catalytic activity were also mirrored by the expression of both protein-bound sialic acid and the polysialic acid oligosaccharide group attached to the neural cell adhesion molecule, NCAM. These results provide further evidence for the role of second messenger-associated kinase enzymes in the modulation of the cell glycosylation potential.  相似文献   

19.
Phytosulfokines (PSKs) are sulfated pentapeptides that stimulate plant growth and differentiation mediated by the PSK receptor (PSKR1), which is a leucine-rich repeat receptor-like kinase. We identified a putative guanylate cyclase (GC) catalytic center in PSKR1 that is embedded within the kinase domain and hypothesized that the GC works in conjunction with the kinase in downstream PSK signaling. We expressed the recombinant complete kinase (cytoplasmic) domain of AtPSKR1 and show that it has serine/threonine kinase activity using the Ser/Thr peptide 1 as a substrate with an approximate K(m) of 7.5 μm and V(max) of 1800 nmol min(-1) mg(-1) of protein. This same recombinant protein also has GC activity in vitro that is dependent on the presence of either Mg(2+) or Mn(2+). Overexpression of the full-length AtPSKR1 receptor in Arabidopsis leaf protoplasts raised the endogenous basal cGMP levels over 20-fold, indicating that the receptor has GC activity in vivo. In addition, PSK-α itself, but not the non-sulfated backbone, induces rapid increases in cGMP levels in protoplasts. Together these results indicate that the PSKR1 contains dual GC and kinase catalytic activities that operate in vivo and that this receptor constitutes a novel class of enzymes with overlapping catalytic domains.  相似文献   

20.
We have previously shown that the inviability associated with disruption of both catalytic subunits of casein kinase II in Saccharomyces cerevisiae can be rescued by plasmids expressing the catalytic subunit of the Drosophila enzyme (Padmanabha et al., 1990, Mol. Cell. Biol. 10, 4089). Here we describe the construction of mutant forms of the Drosophila catalytic subunit in which residues known to be crucial for catalytic activity in other protein kinases have been altered by site-directed mutagenesis. Mutation of either Lys66 or Asp173, which correspond to Lys72 and Asp184 of cAMP-dependent protein kinase, respectively, yields a casein kinase II catalytic subunit which fails to rescue a yeast strain lacking both endogenous catalytic subunit genes. The data indicate that the phosphotransferase activity of casein kinase II is required for its physiological function in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号