首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dysregulation in the expression of miRNAs contributes to the occurrence and development of many human cancers. We herein attempted to obtain the potential association between miRNA expression profile and breast cancer by applying high-throughput sequencing technology. Small RNAs from seven paired tumor and adjacent normal tissue samples were sequenced. To determine the miRNA expression profiles in tissues and sera, another five equally pooled serum samples from 20 patients and 30 normal women were sequenced. Despite a similar number in abundantly expressed miRNAs across samples, we detected varying miRNA expression profiles. Some miRNAs showed inconsistent or opposite dysregulation trends across different tumor tissues, including some abundantly expressed miRNA gene clusters and gene families. Wilcoxon sign-rank test for paired samples analysis revealed that abnormal miRNAs showed a higher level of variation across the seven tumor samples. We also completely surveyed abnormal miRNAs expressed in tumor and serum tissues in the mixed datasets based on the relative expression levels. Most of these miRNAs were significantly down-regulated in tumor samples, but nine abnormal miRNAs (miR-18a, 19a, 20a, 30a, 103b, 126, 126*, 192, 1287) were consistently expressed in tumor tissues and serum samples. Based on experimentally validated target mRNAs, functional enrichment analysis indicated that these abnormal miRNAs and miRNA groups (miRNA gene clusters and gene families) have important roles in multiple biological processes. Dynamic miRNA expression profiles, various abnormal miRNA profiles and complexity of the miRNA regulatory network reveal that the miRNA expression profile is a potential biomarker for classifying or detecting human disease.  相似文献   

3.
hTERT is the catalytic subunit of the telomerase complex. Elevated expression of hTERT is associated with the expansion and metastasis of gastric tumor. In this study, we aimed to identify novel tumor suppressor miRNAs that restrain hTERT expression. We began our screen for hTERT-targeting miRNAs with a miRNA microarray. miRNA candidates were further filtered by bioinformatic analysis, general expression pattern in different cell lines, gain-of-function effects on hTERT protein and the potential of these effects to suppress hTERT 3′ untranslated region (3′UTR) luciferase activity. The clinical relevance of two miRNAs (miR-1207-5p and miR-1266) was evaluated by real-time RT-PCR. The effects of these miRNAs on cell growth, cell cycle and invasion of gastric cancer cells were measured with CCK-8, flow cytometry and transwell assays. Finally, the ability of these miRNAs to suppress the transplanted tumors was also investigated. Fourteen miRNAs were identified using a combination of bioinformatics and miRNA microarray analysis. Of these fourteen miRNAs, nine were expressed at significantly lower levels in hTERT-positive cell lines compared with hTERT-negative cell lines and five could downregulate hTERT protein expression. Only miR-1207-5p and miR-1266 interacted with the 3′ UTR of hTERT and the expression levels of these two miRNAs were significantly decreased in gastric cancer tissues. These two miRNAs also inhibited gastric tumor growth in vitro and in vivo. Altogether, miR-1207-5p and miR-1266 were determined to be hTERT suppressors in gastric cancer, and the delivery of these two miRNAs represents a novel therapeutic strategy for gastric cancer treatment.  相似文献   

4.
5.
6.
MicroRNAs (miRNAs) can control cancer and cancer stem cells (CSCs), and this topic has drawn immense attention recently. Stem cells are a tiny population of a bulk of tumor cells that have enormous potential in expansion and metastasis of the tumor. miRNA have a crucial role in the management of the function of stem cells. This role is to either promote or suppress the tumor. In this review, we investigated the function and different characteristics of CSCs and function of the miRNAs that are related to them. We also demonstrated the role and efficacy of these miRNAs in breast cancer and breast cancer stem cells (BCSC). Eventually, we revealed the metastasis, tumor formation, and their role in the apoptosis process. Also, the therapeutic potential of miRNA as an effective method for the treatment of BCSC was described. Extensive research is required to investigate the employment or suppression of these miRNAs for therapeutics approached in different cancers in the future.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
目前乳腺癌的临床诊疗主要依赖影像学和相对较少的预后/预测指标(如雌激素受体、孕激素受体、HER2等).这些生物标志物主要是基于原发肿瘤病灶的生物学检测,可用于转移或复发的检测指标很少,尤其是在切除肿瘤原发灶后,复发监测很困难.循环cell-free microRNAs(circulating cf-miRNAs,或简称circulating miRNAs)的发现为改变现有乳腺癌临床诊疗模式提供了可能.Cell-free miRNA通过外泌体、微囊或转运蛋白的主动外泌机制,可能在循环miRNA的形成中起着重要作用.Cell-free miRNA特别是circulating miRNA不仅自身可以作为信号分子影响肿瘤细胞和组织微环境,而且还可以与其他信号通路发生交互通讯来调控肿瘤部位新生血管的形成和肿瘤细胞表型的上皮-间质转换,影响乳腺癌的侵袭和转移.本文综述了循环miRNA的特征与分泌机制,特别是乳腺癌相关的循环miRNA参与作为一种液体活检生物标志物在乳腺癌诊断、预后评价和疗效评估的临床意义.  相似文献   

15.
Despite the recent progress in cancer management approaches, the mortality rate of cancer is still growing and there are lots of challenges in the clinics in terms of novel therapeutics. MicroRNAs (miRNA) are regulatory small noncoding RNAs and are already confirmed to have a great role in regulating gene expression level by targeting multiple molecules that affect cell physiology and disease development. Recently, miRNAs have been introduced as promising therapeutic targets for cancer treatment. Regulatory potential of tumor suppressor miRNAs, which enables regulation of entire signaling networks within the cells, makes them an interesting option for developing cancer therapeutics. In this regard, over recent decades, scientists have aimed at developing powerful and safe targeting approaches to restore these suppressive miRNAs in cancerous cells. The present review summarizes the function of miRNAs in tumor development and presents recent findings on how miRNAs have served as therapeutic agents against cancer, with a special focus on tumor suppressor miRNAs (mimics). Moreover, the latest investigations on the therapeutic strategies of miRNA delivery have been presented.  相似文献   

16.
The human herpes virus Epstein-Barr virus (EBV) latently infects and drives the proliferation of B lymphocytes in vitro and is associated with several forms of lymphoma and carcinoma in vivo. The virus encodes ~30 miRNAs in the BART region, the function of most of which remains elusive. Here we have used a new mouse xenograft model of EBV driven carcinomagenesis to demonstrate that the BART miRNAs potentiate tumor growth and development in vivo. No effect was seen on invasion or metastasis, and the growth promoting activity was not seen in vitro. In vivo tumor growth was not associated with the expression of specific BART miRNAs but with up regulation of all the BART miRNAs, consistent with previous observations that all the BART miRNAs are highly expressed in all of the EBV associated cancers. Based on these observations, we suggest that deregulated expression of the BART miRNAs potentiates tumor growth and represents a general mechanism behind EBV associated oncogenesis.  相似文献   

17.
MicroRNAs (miRNAs, miRs) are small (21–25 nucleotides) endogenous and noncoding RNAs involved in many cellular processes such as apoptosis, development, proliferation, and differentiation via binding to the 3′-untranslated region of the target mRNA and inhibiting its translation. Angiogenesis is a hallmark of cancer, which provides oxygen and nutrition for tumor growth while removing deposits and wastes from the tumor microenvironment. There are many angiogenesis stimulators, among which vascular endothelial growth factor (VEGF) is the most well known. VEGF has three tyrosine kinase receptors, which, following VEGF binding, initiate proliferation, invasion, migration, and angiogenesis of endothelial cells in the tumor environment. One of the tumor microenvironment conditions that induce angiogenesis through increasing VEGF and its receptors expression is hypoxia. Several miRNAs have been identified that affect different targets in the tumor angiogenesis pathway. Most of these miRNAs affect VEGF and its tyrosine kinase receptors expression downstream of the hypoxia-inducible Factor 1 (HIF-1). This review focuses on tumor angiogenesis regulation by miRNAs and the mechanism underlying this regulation.  相似文献   

18.
Cancer initiation and progression involve microRNAs that can function like tumor suppressors and oncogenes. The functional significance of most miRNAs is currently unknown. To determine systematically which microRNAs are essential for glioma growth, we screened a precursor microRNA library in three human glioblastoma and one astroglial cell line model systems. The most prominent and consistent cell proliferation–reducing hits were validated in secondary screening with an additional apoptosis endpoint. The functional screening data were integrated in the miRNA expression data to find underexpressed true functional tumor suppressor miRNAs. In addition, we used miRNA-target gene predictions and combined siRNA functional screening data to find the most probable miRNA-target gene pairs with a similar functional effect on proliferation. Nine novel functional miRNAs (hsa-miR-129, -136, -145, -155, -181b, -342-5p, -342-3p, -376a/b) in GBM cell lines were validated for their importance in glioma cell growth, and similar effects for six target genes (ROCK1, RHOA, MET, CSF1R, EIF2AK1, FGF7) of these miRNAs were shown functionally. The clinical significance of the functional hits was validated in miRNA expression data from the TCGA glioblastoma multiforme (GBM) tumor cohort. Five tumor suppressor miRNAs (hsa-miR-136, -145, -342, -129, -376a) showed significant underexpression in clinical GBM tumor samples from the TCGA GBM cohort further supporting the role of these miRNAs in vivo. Most importantly, higher hsa-miR-145 expression in GBM tumors yielded significantly better survival (p<0.005) in a subset of patients thus validating it as a genuine tumor suppressor miRNA. This systematic functional profiling provides important new knowledge about functionally relevant miRNAs in GBM biology and may offer new targets for treating glioma.  相似文献   

19.
Epstein-Barr virus (EBV) is associated with about 6 to 16% of gastric carcinoma cases worldwide. Expression of the EBV microRNAs (miRNAs) was observed in B cells and nasopharyngeal carcinoma cells infected with EBV. However, it is not clear if the EBV miRNAs are expressed in EBV-associated gastric carcinomas (EBVaGCs). We found that BART miRNAs but not BHRF1 miRNAs were expressed in EBV-infected gastric carcinoma cell lines and the tumor tissues from patients as well as the animal model. The expression of viral miRNAs in EBVaGCs suggests that these EBV miRNAs may play important roles in the tumorigenesis of EBVaGCs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号