首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Certain nascent peptide sequences, when within the ribosomal exit tunnel, can inhibit translation termination and/or peptide elongation. The 24 residue leader peptidyl-tRNA of the tna operon of E. coli, TnaC-tRNA(Pro), in the presence of excess tryptophan, resists cleavage at the tnaC stop codon. TnaC residue Trp12 is crucial for this inhibition. The approximate location of Trp12 in the exit tunnel was determined by crosslinking Lys11 of TnaC-tRNA(Pro) to nucleotide A750 of 23S rRNA. Methylation of nucleotide A788 of 23S rRNA was reduced by the presence of Trp12 in TnaC-tRNA(Pro), implying A788 displacement. Inserting an adenylate at position 751, or introducing the change U2609C in 23S rRNA or the change K90H or K90W in ribosomal protein L22, virtually eliminated tryptophan induction. These modified and mutated regions are mostly located near the putative site occupied by Trp12 of TnaC-tRNA(Pro). These findings identify features of the ribosomal exit tunnel essential for tna operon induction.  相似文献   

2.
3.
4.
5.
Translation of the TnaC nascent peptide inhibits ribosomal activity in the presence of l-tryptophan, inducing expression of the tnaCAB operon in Escherichia coli. Using chemical methylation, this work reveals how interactions between TnaC and the ribosome are affected by mutations in both molecules. The presence of the TnaC-tRNA(Pro) peptidyl-tRNA within the ribosome protects the 23S rRNA nucleotide U2609 against chemical methylation. Such protection was not observed in mutant ribosomes containing changes in 23S rRNA nucleotides of the A748-A752 region. Nucleotides A752 and U2609 establish a base-pair interaction. Most replacements of either A752 or U2609 affected Trp induction of a TnaC-regulated LacZ reporter. However, the single change A752G, or the dual replacements A752G and U2609C, maintained Trp induction. Replacements at the conserved TnaC residues W12 and D16 also abolished the protection of U2609 by TnaC-tRNA(Pro) against chemical methylation. These data indicate that the TnaC nascent peptide in the ribosome exit tunnel interacts with the U2609 nucleotide when the ribosome is Trp responsive. This interaction is affected by mutational changes in exit tunnel nucleotides of 23S rRNA, as well as in conserved TnaC residues, suggesting that they affect the structure of the exit tunnel and/or the nascent peptide configuration in the tunnel.  相似文献   

6.
7.
8.
9.
10.
11.
12.
To localize the DNA regions responsible for basal-level and induced expression of the tryptophanase (tna) operon of Proteus vulgaris, short deletions were introduced in the 115-bp spacer region separating tnaC, the leader peptide coding region, from tnaA. Deletions were incorporated into a tnaA'-'lacZ reporter construct containing the intact tna promoter-leader region. Expression was examined in Escherichia coli. Deletions that removed 28 to 30 bp from the region immediately following tnaC increased basal-level expression about threefold and allowed threefold induction by 1-methyltryptophan. A deletion removing 34 bp from the distal segment of the leader permitted basal and induced expression comparable to that of the parental construct. The mutant with the largest spacer deletion, 89 bp, exhibited a 30-fold increase in basal-level expression, and most importantly, inducer presence reduced operon expression by ca. 60%. Replacing the tnaC start codon or replacing or removing Trp codon 20 of tnaC of this deletion derivative eliminated inducer inhibition of expression. These findings suggest that the spacer region separating tnaC and tnaA is essential for Rho action. They also suggest that juxtaposition of the tnaC stop codon and the tnaA ribosome binding site in the 89-bp deletion derivative allows the ribosome that has completed translation of tnaC to inhibit translation initiation at the tnaA start codon when cells are exposed to inducer. These findings are consistent with results in the companion article that suggest that inducer allows the TnaC peptide to inhibit ribosome release at the tnaC stop codon.  相似文献   

13.
Tryptophanase (tna) operon expression in Escherichia coli is induced by tryptophan. This response is mediated by features of a 319-base-pair leader region preceding the major structural genes of the operon. Translation of the coding region (tnaC) for a 24-amino-acid leader peptide is essential for induction. We have used site-directed mutagenesis to investigate the role of the single Trp codon, at position 12 in tnaC, in regulation of the operon. Codon 12 was changed to either a UAG or UGA stop codon or to a CGG arginine codon. Induction by tryptophan was eliminated by any of these changes. Studies with suppressor tRNAs indicated that tRNA(Trp) translation of codon 12 in tnaC is essential for induction of the operon. Reduction of tna expression by a miaA mutation supports a role for translation by tRNA(Trp) in regulation of the operon. Frameshift mutations and suppression that allows translation of tnaC to proceed beyond the normal stop codon result in constitutive tna operon expression. Deletion of a potential site for Rho factor utilization just beyond tnaC also results in partial constitutive expression. These studies suggest possible models for tryptophan induction of tna operon expression involving tRNA(Trp)-mediated frame shifting or readthrough at the tnaC stop codon.  相似文献   

14.
The ribosome catalyzes peptide bond formation between peptidyl-tRNA in the P site and aminoacyl-tRNA in the A site. Here, we show that the nature of the C-terminal amino acid residue in the P-site peptidyl-tRNA strongly affects the rate of peptidyl transfer. Depending on the C-terminal amino acid of the peptidyl-tRNA, the rate of reaction with the small A-site substrate puromycin varied between 100 and 0.14 s(-1), regardless of the tRNA identity. The reactivity decreased in the order Lys = Arg > Ala > Ser > Phe = Val > Asp > Pro, with Pro being by far the slowest. However, when Phe-tRNA(Phe) was used as A-site substrate, the rate of peptide bond formation with any peptidyl-tRNA was approximately 7 s(-1), which corresponds to the rate of binding of Phe-tRNA(Phe) to the A site (accommodation). Because accommodation is rate-limiting for peptide bond formation, the reaction rate is uniform for all peptidyl-tRNAs, regardless of the variations of the intrinsic chemical reactivities. On the other hand, the 50-fold increase in the reaction rate for peptidyl-tRNA ending with Pro suggests that full-length aminoacyl-tRNA in the A site greatly accelerates peptide bond formation.  相似文献   

15.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

16.
C Yanofsky  V Horn    P Gollnick 《Journal of bacteriology》1991,173(19):6009-6017
Escherichia coli forms three permeases that can transport the amino acid tryptophan: Mtr, AroP, and TnaB. The structural genes for these permeases reside in separate operons that are subject to different mechanisms of regulation. We have exploited the fact that the tryptophanase (tna) operon is induced by tryptophan to infer how tryptophan transport is influenced by the growth medium and by mutations that inactivate each of the permease proteins. In an acid-hydrolyzed casein medium, high levels of tryptophan are ordinarily required to obtain maximum tna operon induction. High levels are necessary because much of the added tryptophan is degraded by tryptophanase. An alternate inducer that is poorly cleaved by tryptophanase, 1-methyltryptophan, induces efficiently at low concentrations in both tna+ strains and tna mutants. In an acid-hydrolyzed casein medium, the TnaB permease is most critical for tryptophan uptake; i.e., only mutations in tnaB reduce tryptophanase induction. However, when 1-methyltryptophan replaces tryptophan as the inducer in this medium, mutations in both mtr and tnaB are required to prevent maximum induction. In this medium, AroP does not contribute to tryptophan uptake. However, in a medium lacking phenylalanine and tyrosine the AroP permease is active in tryptophan transport; under these conditions it is necessary to inactivate the three permeases to eliminate tna operon induction. The Mtr permease is principally responsible for transporting indole, the degradation product of tryptophan produced by tryptophanase action. The TnaB permease is essential for growth on tryptophan as the sole carbon source. When cells with high levels of tryptophanase are transferred to tryptophan-free growth medium, the expression of the tryptophan (trp) operon is elevated. This observation suggests that the tryptophanase present in these cells degrades some of the synthesized tryptophan, thereby creating a mild tryptophan deficiency. Our studies assign roles to the three permeases in tryptophan transport under different physiological conditions.  相似文献   

17.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

18.
J Wess  S Nanavati  Z Vogel    R Maggio 《The EMBO journal》1993,12(1):331-338
Most G protein-coupled receptors contain a series of highly conserved proline and tryptophan residues within their hydrophobic transmembrane domains (TMD I-VII). To study their potential role in ligand binding and receptor function, the rat m3 muscarinic acetylcholine receptor was used as a model system. A series of mutant receptors in which the conserved proline and tryptophan residues were individually replaced with alanine and phenylalanine, respectively, was created and transiently expressed in COS-7 cells. [3H]N-methylscopolamine ([3H]NMS) saturation binding studies showed that three of the seven mutant receptors studied (Pro242-->Ala, TMD V; Pro505-->Ala, TMD VI; Pro540-->Ala, TMD VII) were expressed at 35-100 times lower levels than the wild-type receptor while displaying 'm3-like' antagonist binding affinities. Pro201-->Ala (TMD IV) showed drastically reduced binding affinities (up to 450-fold) for both muscarinic agonists and antagonists. Whereas most mutant receptors retained strong functional activity, Pro540-->Ala (TMD VII) was found to be severely impaired in its ability to stimulate carbachol-induced phosphatidyl inositol hydrolysis (Emax approximately 25% of wild type m3). Interestingly, this mutant receptor bound muscarinic agonists with 7- to 19-fold higher affinities than the wild type receptor. The Trp-->Phe substitutions (Trp192-->Phe, TMD IV; Trp503-->Phe, TMD VI; Trp530-->Phe, TMD VII) resulted in less pronounced changes (compared with the Pro-->Ala mutant receptors) in both ligand binding and receptor function. Our data indicate that the proline residues that are highly conserved across the entire superfamily of G protein-coupled receptors play key roles in receptor expression, ligand binding and receptor activation.  相似文献   

19.
20.
The amino acid binding domains of the tryptophanyl (TrpRS)- and tyrosyl-tRNA synthetases (TyrRS) of Bacillus stearothermophilus are highly homologous. These similarities suggest that conserved residues in TrpRS may be responsible for both determining tryptophan recognition and discrimination against tyrosine. This was investigated by the systematic mutation of TrpRS residues based upon the identity of homologous positions in TyrRS. Of the four residues which interact directly with the aromatic side chain of tryptophan (Phe5, Met129, Asp132, and Val141) replacements of Asp132 led to significant changes in the catalytic efficiency of Trp aminoacylation (200-1250-fold reduction in k(cat)/K(M)) and substitution of Val141 by the larger Glu side chain reduced k(cat)/K(M) by 300-fold. Mutation of Pro127, which determines the position of active-site residues, did not significantly effect Trp binding. Of the mutants tested, D132N TrpRS also showed a significant reduction in discrimination against Tyr, with Tyr acting as a competitive inhibitor but not a substrate. The analogous residue in B. stearothermophilusTyrRS (Asp176) has also been implicated as a determinant of amino acid specificity in earlier studies [de Prat Gay, G., Duckworth, H. W., and Fersht, A. R. (1993) FEBS Lett. 318, 167-171]. This striking similarity in the function of a highly conserved residue found in both TrpRS and TyrRS provides mechanistic support for a common origin of the two enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号