首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Overexpression of the error-prone DNA polymerase beta (Pol beta) has been found to increase spontaneous mutagenesis by competing with the replicative polymerases during DNA replication. Here, we investigate an additional mechanism potentially used by Pol beta to enhance genetic instability via its ability to incorporate ribonucleotides into DNA. By using an in vitro primer extension assay, we show that purified human and calf thymus Pol beta can synthesize up to 8-mer long RNA. Moreover, Pol beta can efficiently incorporate rCTP opposite G in the absence of dCTP and, to a lesser extent, rATP opposite T in the absence of dATP and rGTP opposite C in the absence of dGTP. Recently, Pol beta was shown to catalyze in vitro translesion replication of a thymine cyclobutane pyrimidine dimer (CPD). Here, we investigate if ribonucleotides could be incorporated opposite the CPD damage and modulate the efficiency of the bypass process. We find that all four rNTPs can be incorporated opposite the CPD lesion, and that this process affects translesion synthesis. We discuss how incorporation of ribonucleotides into DNA may contribute to the high frequency of mutagenesis observed in Pol beta up-regulating cells.  相似文献   

2.
A single polypeptide with ddNTP-sensitive DNA polymerase activity was purified to near homogeneity from the shoot tips of rice seedlings and analysis of the preparations by SDS-PAGE followed by silver staining showed a polypeptide of 67 kDa size. The DNA polymerase activity was found to be inhibitory by ddNTP in both in vitro DNA polymerase activity assay and activity gel analysis. Aphidicolin, an inhibitor of other types of DNA polymerases, had no effect on plant enzyme. The 67 kDa rice DNA polymerase was found to be recognized by the polyclonal antibody (purified IgG) made against rat DNA polymerase beta (pol beta) both in solution and also on Western blot. The recognition was found to be very specific as the activity of Klenow enzyme was unaffected by the antibody. The ability of rice nuclear extract to correct G:U mismatch of oligo-duplex was observed when oligo-duplex with 32P-labeled lower strand containing U (at 22nd position) was used as substrate. Differential appearance of bands at 21-mer, 22-mer, and 51-mer position in presence of dCTP was visible only with G:U mismatch oligo-duplex, but not with G:C oligo-duplex. While ddCTP or polyclonal antibody against rat-DNA pol beta inhibits base excision repair (BER), aphidicolin had no effect. These results for the first time clearly demonstrate the ability of rice nuclear extract to run BER and the involvement of ddNTP-sensitive pol beta type DNA polymerase. Immunological similarity of the ddNTP-sensitive DNA polymerase beta of rice and rat and its involvement in BER revealed the conservation of structure and function of ddNTP-sensitive DNA pol beta in plant and animal.  相似文献   

3.
4.
5.
Nanosecond dynamics simulations for DNA polymerase beta (pol beta)/DNA complexes with three mismatched base-pairs, namely GG, CA, or CC (primer/template) at the DNA polymerase active site, are performed to investigate the mechanism of polymerase opening and how the mispairs may affect the DNA extension step; these trajectories are compared to the behavior of a pol beta/DNA complex with the correct GC base-pair, and assessed with the aid of targeted molecular dynamics (TMD) simulations of all systems from the closed to the open enzyme state. DNA polymerase conformational changes (subdomain closing and opening) have been suggested to play a critical role in DNA synthesis fidelity, since these changes are associated with the formation of the substrate-binding pocket for the nascent base-pair. Here we observe different large C-terminal subdomain (thumb) opening motions in the simulations of pol beta with GC versus GG base-pairs. Whereas the conformation of pol beta in the former approaches the observed open state in the crystal structures, the enzyme in the latter does not. Analyses of the motions of active-site protein/DNA residues help explain these differences. Interestingly, rotation of Arg258 toward Asp192, which coordinates both active-site metal ions in the closed "active" complex, occurs rapidly in the GG simulation. We have previously suggested that this rotation is a key slow step in the closed to open transition. TMD simulations also point to a unique pathway for Arg258 rotation in the GG mispair complex. Simulations of the mismatched systems also reveal distorted geometries in the active site of all the mispair complexes examined. The hierarchy of the distortions (GG>CC>CA) parallels the experimentally deduced inability of pol beta to extend these mispairs. Such local distortions would be expected to cause inefficient DNA extension and polymerase dissociation and thereby might lead to proofreading by an extrinsic exonuclease. Thus, our studies on the dynamics of pol beta opening in mismatch systems provide structural and dynamic insights to explain experimental results regarding inefficient DNA extension following misincorporation; these details shed light on how proofreading may be invoked by the abnormal active-site geometry.  相似文献   

6.
Cloning of the Xiphophorus maculatus Polbeta gene and overexpression of the recombinant Polbeta protein has been performed. The organization of the XiphPolbeta introns and exons, including intron-exon boundaries, have been assigned and were found to be similar to that for human Polbeta with identical exon sizes except for exon XII coding for an additional two amino acid residues in Xiphophorus. The cDNA sequence encoding the 337-amino acid X. maculatus DNA polymerase beta (Polbeta) protein was subcloned into the Escherichia coli expression plasmid pET. Induction of transformed E. coli cells resulted in the high-level expression of soluble recombinant Polbeta, which catalyzed DNA synthesis on template-primer substrates. The steady-state Michaelis constants (Km) and catalytic efficiencies (kcat/Km) of the recombinant XiphPolbeta for nucleotide insertion opposite single-nucleotide gap DNA substrates were measured and compared with previously published values for recombinant human Polbeta. Steady-state in vitro Km and kcat/Km values for correct nucleotide insertion by XiphPolbeta and human Polbeta were similar, although the recombinant Xiphophorus protein exhibited 2.5-7-fold higher catalytic efficiencies for dGTP and dCTP insertion versus human Polbeta. In contrast, the recombinant XiphPolbeta displayed significantly lower fidelities than human Polbeta for dNTP insertion opposite a single-nucleotide gap at 37 degrees C.  相似文献   

7.
8.
Captan inhibits DNA polymerases of both eukaryotic and prokaryotic sources. When polymerases were employed in assays with various polynucleotides as template-primer, no specificity in the base sequence of polynucleotide was required for inhibition. Sucrose gradient centrifugation and preincubation studies showed the inhibition was caused by an irreversible alteration of the polymerase. Captan and DNA compete for the same site on the polymerase, thus DNA can serve a protective role in the elimination of captan's action. The pyrophosphate exchange activity associated with the polymerase is not inhibited by captan and the fidelity with which DNA polymerase I copies the DNA template also is not altered by captan treatment.  相似文献   

9.
Ternary complexes of wild type or mutant form of human DNA polymerase beta (pol beta) bound to DNA and dCTP substrates were studied by molecular dynamics (MD) simulations. The occurrences of contact configurations (CC) of structurally important atom pairs were sampled along the MD trajectories, and converted into free-energy differences, DeltaG(CC). DeltaG(CC) values were correlated with the experimental binding and catalytic free energies for the wild type pol beta and its Arg183Ala, Tyr271Ala, Asp276Val, Lys280Gly, Arg283Ala, and Glu295Ala mutants. The correlation coefficients show that the strength of the H-bond between dCTP and Asn279 is a strong predictor of the mutation-induced changes in the catalytic efficiency of pol beta. This finding is consistent with the view that enzyme preorganization plays a major role in controlling DNA polymerase specific activity.  相似文献   

10.
Herein we report Xiphophorus DNA polymerase beta (XiphPolbeta) mRNA and protein expression levels in brain, liver, gill, and testes tissues from Xiphophorus maculatus, Xiphophorus helleri, and Xiphophorus couchianus parental line fish and two different tumor-bearing Xiphophorus interspecies hybrids. Polymerase beta protein levels in the Xiphophorus tissues were measured by Western blot, and mRNA was measured with a quantitative real time RT-PCR method which employed cRNA construction to produce accurate calibration curves. We found significant differences in both mRNA and protein levels between the tumor-bearing hybrid animals and the three parental species. However, there were no significant differences in either mRNA levels or protein expression observed between the parental species. Thus, interspecies hybridization results in dysregulation of Polbeta expression and this may manifest a modulation in DNA repair capability and susceptibility to latent tumorigenesis.  相似文献   

11.
12.
DNA polymerases (pols) catalyse the synthesis of DNA. This reaction requires a primer-template DNA in order to grow from the 3'OH end of the primer along the template. On the other hand terminal deoxyribonucleotidyl transferase (TdT) catalyses the addition of nucleotides at the 3'OH end of a DNA strand, without the need of a template. Pol lambda and pol micro are ubiquitous enzymes, possess both DNA polymerase and terminal deoxyribonucleotidyl transferase activities and belong to pol X family, together with pol beta and TdT. Here we show that pol lambda, pol micro and TdT, all possess the ability to synthesise in vitro short fragments of DNA in the absence of a primer-template or even a primer or a template in the reaction. The DNA synthesised de novo by pol lambda, pol micro and TdT appears to have an unusual structure. Furthermore we found that the amino acid Phe506 of pol lambda is essential for the de novo synthesis. This novel catalytic activity might be related to the proposed functions of these three pol X family members in DNA repair and DNA recombination.  相似文献   

13.
14.
Inhibitors of DNA polymerase have been detected in Xenopus laevis ovary and egg extracts. The characteristics of the inhibitors differ between the two extracts. In ovary preparations, the inhibitor is retained by dialysis tubing and is heat sensitive, whereas in egg extracts it is diffusable and heat stable. In both extracts, the activity co-elutes with DNA polymerase after ion exchange chromatography. Chromatography of ovary extracts renders the inhibitor diffusable and heat stable. Preliminary characterisation of inhibitory activity from eggs shows that the substance is sensitive to pronase digestion and has an approx. 300–500 molecular weight. Kinetic studies demonstrate that the inhibitor is uncompetitive with the DNA template and show mixed inhibitory kinetics with respect to the deoxynucleotides.  相似文献   

15.
Abasic (apurinic/apyrimidinic) sites are among the most abundant DNA lesions in humans, and they present a strong block to replication. They are also highly mutagenic because when replicative DNA polymerases manage to insert a nucleotide opposite the lesion, they prefer to insert an A. Rev1, a member of Y-family DNA polymerases, does not obey the A-rule. This enzyme inserts a C opposite an abasic lesion with much greater catalytic efficiency than an A, G, or T. We present here the structure of yeast Rev1 in ternary complex with DNA containing an abasic lesion and with dCTP as the incoming nucleotide. The structure reveals a mechanism of synthesis across an abasic lesion that differs from that in other polymerases. The lesion is driven to an extrahelical position, and the incorporation of a C is mediated by an arginine (Arg324) that is conserved in all known orthologs of Rev1, including humans. The hydrophobic cavity that normally accommodates the unmodified G is instead filled with water molecules. Since Gs are especially prone to depurination through a spontaneous hydrolysis of the glycosidic bond, the ability of Rev1 to stabilize an abasic lesion in its active site and employ a surrogate arginine to incorporate a C provides a unique means for the “error-free” bypass of this noninstructional lesion.  相似文献   

16.
PCNA is well known as a component of DNA replication system and plays important roles in multiple cellular pathways in addition to replication and repair. In this work we have demonstrated the physical and functional interaction between tobacco PCNA and mungbean ddNTP-sensitive DNA polymerase which shares many physicochemical properties with family X-DNA polymerases except with the moderately processive mode of nucleotide incorporation. We have shown here that recombinant PCNA binds directly to mungbean DNA polymerase as revealed in affinity chromatography, pull-down and co-immunoprecipitation approaches. In vitro DNA polymerase activity assay and processivity analyses indicated recombinant PCNA specifically stimulates both activity and processivity of mungbean DNA polymerase. These observations lead to interesting speculation about the functional significance of the ddNTP-sensitive enzyme in replication event in higher plants since the enzyme has been shown to be active and expressed at an elevated level during the endoreduplication stages in developing mungbean seeds.  相似文献   

17.
High-efficiency bypass of DNA damage by human DNA polymerase Q   总被引:1,自引:0,他引:1       下载免费PDF全文
Endogenous DNA damage arises frequently, particularly apurinic (AP) sites. These must be dealt with by cells in order to avoid genotoxic effects. DNA polymerase theta; is a newly identified enzyme encoded by the human POLQ gene. We find that POLQ has an exceptional ability to bypass an AP site, inserting A with 22% of the efficiency of a normal template, and continuing extension as avidly as with a normally paired base. POLQ preferentially incorporates A opposite an AP site and strongly disfavors C. On nondamaged templates, POLQ makes frequent errors, incorporating G or T opposite T about 1% of the time. This very low fidelity distinguishes POLQ from other A-family polymerases. POLQ has three sequence insertions between conserved motifs in its catalytic site. One insert of approximately 22 residues into the tip of the polymerase thumb subdomain is predicted to confer considerable flexibility and additional DNA contacts to affect enzyme fidelity. POLQ is the only known enzyme that efficiently carries out both the insertion and extension steps for bypass of AP sites, commonly formed as endogenous genomic lesions.  相似文献   

18.
19.
The simple deletion of nucleotides is common in many organisms. It can be advantageous when it activates genes beneficial to microbial survival in adverse environments, and deleterious when it mutates genes relevant to survival, cancer or degenerative diseases. The classical idea is that simple deletions arise by strand slippage. A prime opportunity for slippage occurs during DNA synthesis, but it remains unclear how slippage is controlled during a polymerization cycle. Here, we report crystal structures and molecular dynamics simulations of mutant derivatives of DNA polymerase lambda bound to a primer-template during strand slippage. Relative to the primer strand, the template strand is in multiple conformations, indicating intermediates on the pathway to deletion mutagenesis. Consistent with these intermediates, the mutant polymerases generate single-base deletions at high rates. The results indicate that dNTP-induced template strand repositioning during conformational rearrangements in the catalytic cycle is crucial to controlling the rate of strand slippage.  相似文献   

20.
Based on the available crystal structure a model is presented for the polymerization activity and switching transition between polymerase and exonuclease sites of a DNA polymerase molecular motor. Using the model, the fast polymerization rate for correctly base-paired DNA and much reduced polymerization rate after an incorporation of a mismatched base can be well explained. The dependences of the polymerization rate and exonuclease rate on mechanical tension acting on the DNA template are studied. The switching rates between the two sites are analyzed. All the results show good quantitative agreement with the available experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号