首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Proliferation of macroalgae is a world-wide problem with 50,000 m3 of drift Ulva harvested per year in Brittany and about 1.0 to 1.2 million tons growing in the Venice lagoon. This biomass may be treated by bioconversion (aerobic or anaerobic fermentation) to give useful products (gas, fertilizers or others) and to remove a source of environmental pollution. Such a treatment also may be applied to cultivated or harvested seaweds and to seaweed industry residues.Studies of seaweed methanization showed Laminaria an especially good substrate and Ulva a possible substrate. Research led to a defined way of treating drift algae, encompassing natural hydrolysis and pressing with methanization of the juices.The most advanced full-scale realization for algal biomass utilization is the C.A.T.-Quatre-Vaulx composting plant in Saint-Cast-Le-Guildo (Brittany, France). It produced from seaweed, wood and animal dung a biological quality compost that is competitive with the traditional market products.  相似文献   

2.
In Paracas Bay (Peru), large quantities of Ulva sp. interfere with various important activities of the zone. In this context, the present study was undertaken to evaluate the effect of adding Ulva sp. in compost piles and the quality of the resulting composts. Six compost piles were prepared using, straw, green material mixture, cow manure and Ulva in different quantities (9, 17 and 28% of volume) and forms. Several variables were monitored during the process and the chemical characteristics of the final composts were determined. Aerial biomass achieved by maize plants was also evaluated for each compost at different compost/sand proportions. Results show that the compost pile made with Ulva powder registered the highest temperature and the longest thermophilic phase. Piles prepared with 28% washed Ulvapresented anoxic conditions at the beginning and had higher electrical conductivity values. Carbon/Nitrogen ratio diminished appropriately in all piles and there was no negative effect observed on the pH of the piles. Compost prepared with Ulva had lower contents of Total Kjeldahl Nitrogen, and produced maize plants aerial biomass.  相似文献   

3.
Trends in wrack composition and biomass, and its relationship with the anthropogenic impact were studied along a coastal area in Nuevo Gulf (south Patagonia) in front of Puerto Madryn city. Beach-cast macroalgae composition was sampled from 1992 to 1999 in the Puerto Madryn beaches and in several other nearby beaches in 1993, 1996 and 1998. Historical information was based on local knowledge and observations reported by marine biologists who worked in the area. The botanical composition of the beach-cast macroalgae in Puerto Madryn indicates a succession in the dominance from Codium spp. to Ulva spp. during the 1990s and from Ulva to Undaria pinnatifida since 1998, accompanied by a significant decrease in biomass of Gracilaria gracilis and Macrocystis pyrifera. The increase of the opportunist species such as Ulva may be supported by the continuous delivery of waste waters into the Nuevo Gulf while the dominance of U. pinnatifida may be associated with port activities. During the sampling period the highest wrack biomass values were recorded in spring and summer. The beach-cast seaweed biomass harvested by the municipality of Puerto Madryn during beach cleaning operation, ranged between 2500 and 12000 t year–1 ( 200 and 960 t dry weight). Wrack harvesting produces an environmental impact by removing sand from the beach and affecting coastal communities. Composting of wrack is proposed as one of the environmental alternatives to land disposal.  相似文献   

4.
85 000 m3 of Ulva sp. is harvested each year in Brittany (France) during a 3–4-month season. Spreading is often impossible and the alga does not keep for more than a few days. Storage results in objectionable odours and release of a liquified fraction. Such pollution can be suppressed by composting the alga with the lowest possible quantity of ligno-cellulosic substrates. This results in the stabilisation of the seaweed, and its use can thereby be delayed. This system of processing the seaweed decreases the cost of treatment by composting and the product can be used either as a substrate for later composting or as an organic enhancing and fertilising agent. (*author for correspondence)  相似文献   

5.
Large quantities of green seaweed, probably due to eutrophication, are found in the Baltic Sea, as well as on the beach. The tourist attractiveness of the seaside resorts is therefore reduced. The aim of this study was to find the method of the utilization of this algal biomass into fertilizers. Algae, collected from the Baltic Sea, were co‐composted with sawdust and quail manure in order to produce natural fertilizer. From the compost, algal extract was additionally produced that can act as a plant growth biostimulant. The compost and extract were biologically evaluated by the determination of the growth and multielemental composition of garden cress (Lepidium sativum) in germination tests. Additionally, the odour emissions during composting process were investigated. It was found that the dry biomass was comparable in all examined groups (compost, extract, distilled water). The average length of plants in the group with compost was 14.5% higher than in the group with the extract (difference not statistically significant). There has been observed a positive effect of the addition of compost on the content of micro‐ and macronutrients in the biomass of the cultivated plants, especially boron, calcium, iron and silicon. The averaged odour concentrations measured from the compost and extract samples were very low and reached the values of 8 and 24 ouE/m3, respectively. According to the obtained results, by composting of seaweeds it is possible to produce a valuable organic fertilizer, which is the method of valorisation of this biomass.  相似文献   

6.
Bahía San Quintín is a coastal lagoon with large Ulva biomass and upwelling influence. Previous observations suggest that Ulva has increased recently as a result of oyster cultivation. To evaluate the possible role of Ulva as a temporary nutrient sink, biomass and tissue C, N, and P were determined seasonally. Maximum biomass was present during spring and early summer (1,413–1,160 t (dry)) covering about 400 ha. However, the biomass decreased to 35 t (dry) by winter. The mean annual percentage of Ulva C, N, and P was 28%, 2%, and 0.14%, respectively. This study shows that Ulva can store up to 28 t of N and 2 t of P in Bahía San Quintín during spring–summer. Ulva may be displacing the seagrass Zostera marina subtidal beds. A partial removal of the seaweed would reduce the risk of eutrophication and the displacement of eelgrass beds.  相似文献   

7.
Growth of the seaweed Ulva rigida C. Agardh was investigated in relation to biomass densities, internal nutrient pools and external nutrient supply. Research was carried out from 23 March to 5 July 1994 in the Sacca di Goro (Po Delta, Northern Italy), whose south-eastern part was covered by extensive mats of Ulva rigida. Two types of field experiments were conducted by incubating Ulva thalli inside large cages. In the first experiment, beginning on 23 March, 100 g of wet thalli were placed into the cages, allowed to grow for two weeks, then collected and replaced. This procedure was repeated 8 times over the study period. In the second experiment, Ulva thalli were left inside the cages and collected at selected time intervals (14, 27, 41, 64 and 76 days) in order to simulate the effects of increased density on growth and nutrient storage.We recorded specific growth rates (NGR) ranging from 0.025 to 0.081 d–1 for a period up to two months in the repeated short-term experiments performed at relatively low initial algal densities (300–500 g AFDW m–3). These NGR resulted significantly related to dissolved inorganic nitrogen (DIN) in the water column. Tissue concentrations of total Kjeldahl nitrogen (TN) were almost constant, while extractable nitrate decreased in a similar manner to DIN in the water column. Total phosphorus showed considerable variation, probably linked to pulsed freshwater inflow.In the long-term incubation experiment, NGR of Ulva was inversely related to density. Internal concentrations of both total P and TN reached maximum values after one month; thereafter P concentration remained almost constant, while TN decreased below 2% w/w (by dry weight). The TN decrease was also accompanied by an abrupt decrease in nitrate tissue concentration. The biomass incubated over the two month period suffered a progressive N limitation as shown by a decreasing NY ratio (49.4 to 14.6). The reciprocal control of Ulva against biogeochemical environment and viceversa is a key factor in explaining both resource competition and successional stages in primary producer communities dominated by Ulva. However, when the biomass exceeds a critical threshold level, approximately 1 kg AFDW m–3, the macroalgal community switches from active production to rapid decomposition, probably as a result of selfshading, biomass density and development of anaerobic conditions within the macroalgal beds.  相似文献   

8.
Processes leading to biomass variation of Ulva were investigated at two contrasting sites in the eutrophic Veerse Meer (The Netherlands). Ulva species dominated at the Middelplaten site, while at the Kwistenburg site a mixture of Ulva spp. and Chaetomorpha linum dominated. Total summer macroalgal biomass was higher at Middelplaten than at Kwistenburg (282 and 79 g DW m–2, respectively). Growth rates of Ulva spp. were high at both sites in May 1992 (cage mean 0.28–0.30 day–1), but quickly dropped to lower values (0.05–0.10 day–1). In May, growth rates were significantly highest at Kwistenburg, while during the rest of the season growth rates were similar for both sites. Temperature, pH, dissolved oxygen, salinity, light attenuation, phytoplankton and nutrient concentrations did not differ between sites. The relation between variation in Ulva spp. growth rates and environmental parameters was analysed using stepwise multiple regression, showing that light and temperature were the main variables regulating Ulva spp. growth rates. As Ulva growth rates were similar for both sites but biomass was much lower at Kwistenburg it was concluded that a large amount of produced biomass was lost at Kwistenburg. Although the exact reason for this remains unclear, it seems most likely that transport of macroalgae by wind and waves is a very important factor. This study shows the importance of simultaneously measuring growth rates and biomass at a high temporal resolution to reveal the mechanisms responsible for spatial variation in macroalgal biomass in shallow coastal areas. Electronic Publication  相似文献   

9.
Net daily budgets of dissolved oxygen (O2), dissolved inorganic carbon (DIC), dissolved inorganic nitrogen (DIN = NH4++NO2+NO3) and soluble reactive phosphorus (SRP) were determined in a pond colonised by Ulva spp. This pond received wastewater from a land-based fish farm and was used as a phytotreatment plant. Three consecutive 24-h cycles of measurements were performed with 8–14 samplings per day. Water samples were collected at the inlet and outlet of the pond and budgets were estimated from differences between inlet and outlet loadings. The first cycle was started when Ulva biomass was 8 kg m−2, as wet weight. The second cycle was performed after the harvest of ~20% of the macroalgal biomass and the third after the harvest of another ~20% of the remaining biomass. Ulva removal was very fast (<1 h) and samplings for cycles 2 and 3 were started two hours after harvesting, so that the whole experiment lasted ~80 h. When Ulva biomass was at its maximum, the aquatic system was heterotrophic with an O2 demand of 519 mol d−1 and a net regeneration of DIC (2686 mol d−1), NH4+ (49 mol d−1) and SRP (2.5 mol d−1). The DIC to O2 ratio was an indicator of persistent anaerobic metabolism. Following the first harvest intervention, this system displayed a prompt response and shifted toward a lower O2 demand (from −519 to −13 mol d−1), with a lesser regeneration degree of NH4+ (11.4 mol d−1) and DIC (1066 mol d−1). After the second Ulva removal the net budget of SRP became negative (−1.0 mol d−1). By integrating these results over the three days cycle we estimated that in order to operate an efficient nutrient control and maintain macroalgal mats in a healthy status the optimal Ulva biomass should be well below ~4 kg m−2 as wet weight. Above this threshold, self-limitation would render most of the algal mat unable to exploit light and nutrients. An efficient removal of nitrogen and phosphorus could be attained through the management of macroalgal biomass only with an optimisation of recipient surface to nutrient loading ratio.  相似文献   

10.
Among the 19 non-native species of marine invertebrates which have invaded the Venice Lagoon and have established populations, Ruditapes philippinarum, deliberately introduced in 1983, is surely the most successful species. According to the hypothesis that alien species invasion could be favoured by an altered ecological, chemical or physical state of the system induced by anthropogenic disturbance, R. philippinarum turned out to be ‘the right species at the right moment’. By comparing historical data (1968, 1985, 1990) with 1999 data, changes in macrobenthic community, in particular bivalve molluscs, of the lagoon induced by R. philippinarum introduction and subsequent clam exploiting activity were assessed. It has been possible to describe a sharp reduction, both in terms of distribution area and density, of all other filter feeder bivalves. Moreover, by using the clearance rate of the most abundant bivalve species in 1990 and 1999 (Cerastoderma glaucum and R. philippinarum, respectively), it was possible to estimate that the filtration capacity, expressed as l h−1 m−2, has more than doubled. This has altered the functioning of the ecosystem, resulting in a stronger benthic–pelagic coupling. In this context, R. philippinarum attains control of the system. Considering all this, it is possible to state that the Venice Lagoon ecosystem has entered into a new state, probably more resistant but less resilient, with implications for future management choices.  相似文献   

11.
Biphasic composts were prepared by first mixing peat moss and sawdust with a nitrogen-rich biomass such as chitinous waste or cow manure and composting them until termination of the thermophilic phase. These partially stabilized composts were then amended with shrimp waste inducing a second thermophilic phase. Filter-sterilized water extracts obtained from two mature biphasic composts (SP2W2+S and MPW+S) reduced the growth of two oomycete plant pathogens, Phytophthora fragariae var. rubi and Pythium ultimum. Both SP2W2+S and MPW+S composts significantly reduce the incidence of cucumber damping-off caused by Pythium ultimum as compared to a commercial brand of compost made from shrimp waste and peat moss. Hydrolysis products of chitin were unlikely to be responsible for growth inhibition since no oligomeric forms of chitin were detected in SP2W2+S. The shrimp waste amendment carried out after the first thermophilic phase modified the microbial populations of biphasic composts. Following the amendment, the proportion of branched-chain microbial fatty acids typical of Gram-positive bacteria increased considerably suggesting that this group of bacteria became more prevalent within the total microbial population. These data suggests that the two-phase composting process promotes the proliferation of Gram-positive bacteria antagonistic to oomycete plant pathogens.  相似文献   

12.
The influence of nutrient addition on the growth rate of Spirulina platensis in the Mangueira Lagoon water was studied in order to investigate the feasibility of using this water for biomass production. The addition of urea and sodium bicarbonate was studied through surface response methodology, over concentration ranges from 0.0 to 0.01170 M, and 0.0–19.70 gl–1 respectively. The growth of Spirulina platensis in Mangueira Lagoon water with no addition of nutrients was carried out and compared with the biomass growth after nutrient addition. The results indicated that the optimal level of nutrients was 0.00585 M urea and without the addition of sodium bicarbonate. The biomass concentration was 1.4 gl–1 in 780 h of cultivation and the doubling time (t d) was 3.85 days. In 300 h, the biomass concentration in the medium without nutrient addition was 0.9 gl–1, with a doubling time of 3.80 days.  相似文献   

13.
During the period of 1988–2000, three alien gammarid species, i.e. Gammarus tigrinus Sexton, 1939, Pontogammarus robustoides G. O. Sars, 1894, and Dikerogammarus haemobaphes (Eichwald, 1841) were recorded in the Odra estuary. This study, the first record of G. tigrinus and P. robustoides in Poland, focuses on the distribution, abundance, and biomass as well as on population structure of the three new species found in the coastal zone of the estuary. G. tigrinus and P. robustoides were first sampled in the Szczecin Lagoon (mid-part of the estuary) in 1988. The densities of both species were high from the time they were first recorded and exceeded 10 000 ind. m–2, while the biomass was 25 and 140 g m–2, respectively. G.tigrinus occurred at higher densities in northern and eastern parts of the Lagoon, while P. robustoides was particularly abundant in the south-eastern part, most heavily affected by River Odra discharge. In 1999, the third gammarid, D. haemobaphes, was recorded in the southern part of the estuary. Both in 1999 and 2000, the species was found in qualitative samples (dredge collections of Dreissena polymorpha) taken from the western branch of the river. As estimated from quantitative samples, densities and biomass in the eastern branch were rather low and did not exceed 150 ind. m–2 and 2.7 g m–2, respectively. The Szczecin Lagoon population of G. tigrinus produces at least two generations within a year: a summer one and an overwintering one. The latter is dominated by older and larger specimens. The species may reproduce in the Lagoon from April until November.  相似文献   

14.
Aims: The purpose of this study was to determine the effect of moisture on thermal inactivation of Salmonella spp. in poultry litter under optimal composting conditions. Methods and Results: Thermal inactivation of Salmonella was studied in fresh poultry compost by simulating early phase of composting process. A mixture of three Salmonella serotypes grown in Tryptic soy broth with rifampin (TSB‐R) was inoculated in fresh compost with 40 or 50% moisture at a final concentration of c. 7 log CFU g?1. The inoculated compost was kept in an environmental chamber which was programmed to rise from room temperature to target composting temperatures in 2 days. In poultry compost with optimal moisture content (50%), Salmonella spp. survived for 96, 72 and 24 h at 50, 55 and 60°C, respectively, as compared with 264, 144 and 72 h at 50, 55 and 60°C, respectively, in compost with suboptimal moisture (40%). Pathogen decline was faster during the come‐up time owing to higher ammonia volatilization. Conclusions: Our results demonstrated that Salmonella spp. survived longer in fresh poultry compost with suboptimal moisture of 40% than in compost with optimal moisture of 50% during thermophilic composting. High nitrogen content of the poultry compost is an additional factor contributing to Salmonella inactivation through ammonia volatilization during thermal exposure. Significance and Impact of the Study: This research validated the effectiveness of the current composting guidelines on Salmonella inactivation in fresh poultry compost. Both initial moisture level and ammonia volatilization are important factors affecting microbiological safety and quality of compost product.  相似文献   

15.
During the last decade, the Palmones River estuary has undergone severe eutrophication followed by a green tide episode; two species of Ulva, rotundata Blid. and Ulva curvata (Kütz.) De Toni, were the main macroalgae responsible for this bloom. From November 1993 to December 1994, we followed the biomass, the growth dynamics, and tissue elemental composition (C:N:P)of Ulva species, as well as some physicochemical variables in the estuary. Maximum biomass (up to 375 g dry wt·m?2 in some spots, corresponding to a thallus area index of nearly 17 m2Ulva·m?2 sediment) were observed in June and December. However, the biomass varied among the sampling stations. Water nitrate, ammonia, and phosphate showed high concentrations throughout the year, with extremely high transient pulses, sustaining the high growth rates observed. Growth rates were estimated directly in the field. The rates were generally higher in Ulva discs maintained in net cages than those estimated by changes in biomass standing stock between two consecutive samplings. The difference between both estimates was used to quantify the importance of the processes causing loss of biomass, which were attributable to grazing, exported biomass, and thallus decomposition under anaerobic conditions resulting from extreme self-shading. Maximum chlorophyll content was found in winter, whereas the minimum was in spring. Atomic N:P ratios were generally higher in the algae than in the water. However, the absolute concentrations of tissue N and P were always higher than the critical levels for maximum growth, which suggests that growth was not limited by inorganic N or P availability. The results suggested that the increase in nutrient loading in the river may have triggered the massive development of green algae and that light limitation and temperature stress in summer seem to be the main factors controlling the abundance of Ulva in the estuary. In addition to light availability and thermal stress, the different loss processes may have a decisive role in the dynamics of Ulva biomass.  相似文献   

16.
Eutrophication of shallow coastal waters often leads to blooms of macroalgae. Grazing by crustaceans, such as amphipods and isopods, can reduce macroalgal biomass accumulation. At the same time, growth of the macroalgae can be stimulated by epiphyte removal. The role of grazing by isopods and amphipods on Ulva spp. biomass development was investigated in the Veerse Meer, a brackish lagoon situated in the southwest Netherlands. Exclusion of grazing in the field did not stimulate Ulva spp. growth. In fact, growth rates were higher in exclosures that allowed grazers to enter. Edibility tests identified the amphipod Gammarus locusta, and the isopods Idotea chelipes and Sphaeroma hookeri as potential grazers on Ulva spp. However, when epiphytic diatoms were present on the Ulva spp. thalli, Gammarus and Sphaeroma grazed on ephiphytes and not on Ulva tissue. Only Idotea continued to graze on Ulva spp. A laboratory growth experiment revealed a positive effect of Gammarus presence on Ulva spp. growth, probably caused by preferential removal of epiphytic diatoms from the Ulva spp. thalli. The growth stimulation by epiphyte removing grazers such as Gammarus may explain the higher growth rates in the presence of grazers observed in the field. When determining the potential role of invertebrate grazers in controlling macroalgal biomass accumulation, it is important to include an assessment of the epiphyte abundance on the macroalgae, as preferential removal of epiphytes may stimulate growth and thus have the opposite effect.  相似文献   

17.
Fluxes of dissolved oxygen and ammonium across the water sediment interface were measured in a control and in an experimental area farmed with the clam Tapes philippinarum. Young clams were seeded in March 2003 at mean (~500 ind m−2) and high (~1500 ind m−2) densities in a sandy area (2100 m2) of the Sacca di Goro Lagoon, Italy. Approximately every two months, until October 2003, intact sediment cores were collected and incubated in the light and in the dark and surface sediments (0–2 cm) were analysed for organic matter and nitrogen content. Clams farming induced pronounced changes in sediment characteristics and metabolism. Oxygen consumption and ammonium production at the high density area were, on average, 3 to 4 and 1.9 to 4.9 folds higher than those measured in the control field respectively; rates were positively correlated with clams biomass. Experimental fields resulted “Net and Total Heterotrophyc” in 3 out of 4 sampling dates and clams were the major factor shifting the benthic system towards this status. In only one occasion the appearance of the macroalgae Ulva spp. pushed the system rapidly towards hyperautotrophic conditions. Our results indicated that clams have the potential to drive benthic metabolism in farmed areas and to sustain macroalgal growth through regeneration of a limiting nutrient for seawater as inorganic N.  相似文献   

18.
Over 1,000t fresh weight of Ulva was cultivated on South African abalone farms in 2007, primarily for feed, but in one case to allow partial re-circulation by nutrient removal. The potential of this new commercial crop is analysed. Material is collected from natural free-floating populations and at least four species are commonly grown, with different ecophysiological characteristics. A brown epiphyte, Myrionema strangulans, causes a disease of the Ulva, which is currently managed by farmers by re-stocking. The main potential threat is that some farmers are wary of integrated systems, fearing they may promote disease in abalone, although Ulva has been grown in abalone effluent and fed back to the abalone on one farm for 6 years without adverse effects. Opportunities exist for the expansion of Ulva cultivation via further spread of the abalone industry, the inclusion of seaweed raceways in proposed fish-farming activities, or the potential for the inclusion of high quality cultivated Ulva as a constituent in aquafeed. A conservative estimate of production over a full year from these raceway systems was 26.1 g dw m−2 day−1 (2006) and 19.7 g dw m−2 day−1 (2007), similar to maximum figures for total annual microalgal biomass production in outdoor systems.  相似文献   

19.
One- and two-dimensional1H- and13C-NMR spectra of lipid extracts fromUlva rigida, Gracilaria longa, Fucus virsoides andCodium tomentosum collected in the northern Adriatic Sea allowed screening of the content of fatty acid chains, carotenoids, free and acylated cholesterol and chlorophylls. The carotenoid-to-polyunsaturated fatty acid molar ratio was taken as a comparison parameter in samples ofUlva rigida collected in differentloci and seasons; the value was markedly higher in samples from the Lagoon of Venice than from marine coastal waters. The total cholesterol concentration was evaluated by1H-NMR spectroscopy and similar values were found for all species. Two-dimensional heterocorrelated NMR spectroscopy was shown to give characteristic fingerprints of the lipid extracts from algal samples as regards the content in chlorophylls, unsaturated fatty acids and carotenoids.author for correspondence  相似文献   

20.
The number of airborne microorganisms in the area of large-scale composting facilities with different composting techniques (A: open facility using the intensive decomposition process [4000 t/year]. B: closed facility with compost containers [7000 t/year], C: closed facility with table-pile compositing and automatic turning equipment [22 000 t/year]) was investigated using impactor sampling systems (Andersen samplers). All counts carried out inside the closed facilities, especially during the turning process, showed values of >5.0 × 105 CFU/m3 for viable bacteria and moulds with a proportion ofAspergillus fumigatus of up to 64%. Depending on the type of facility, different median values were determined inside the plant area. Counts were highest in the immediate area around the biofilter outside of Facility C (1.7 × 104 CFU/m3 for bacteria and 9.5 × 103 CFU/m3 for moulds). In view of the high load of ambient airborne microorganisms inside the composting facilities, adequate occupational health measures are urgently required. Counts determining the hazard to neighbourhood residents at distances of between 150 and 2000 m showed, depending on the facility, annual median values of 170–330 CFU/m3 for bacteria, 75–340 CFU/m3 for moulds, and 15–52 CFU/m3 forA. fumigatus. Higher individual counts — up to 3 × 103 CFU/m3 for moulds and up to 350 CFU/m3 forA. fumigatus — were found as a result of specific climatic influences, (e.g. winds) and activities as well poor operation. Given the high proportion ofA. fumigatus in the exhaust air, this mould can serve as an indicator for the evaluation of the health risk. However, the maximum values found in the present study, may also be caused by other events in rural areas, (e.g. agricultural activities). With regard to neighbourhood residents, odour complaints are more important than pollution by microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号