首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metabolism of 5-methylthioribose to methionine   总被引:1,自引:0,他引:1  
During ethylene biosynthesis, the H3CS- group of S-adenosylmethionine is released as 5′-methylthioadenosine, which is recycled to methionine via 5-methylthioribose (MTR). In mungbean hypocotyls and cell-free extracts of avocado, [14C]MTR was converted into labeled methionine via 2-keto-4-methylthiobutyric acid (KMB) and 2-hydroxy-4-methylthiobutyric acid (HMB), as intermediates. Incubation of [ribose-U-14C]MTR with avocado extract resulted in the production of [14C]formate, indicating the conversion of MTR to KMB involves a loss of formate, presumably from C-1 of MTR. Tracer studies showed that KMB was converted readily in vivo and in vitro to methionine, while HMB was converted much more slowly. The conversion of KMB to methionine by dialyzed avocado extract requires an amino donor. Among several potential donors examined, l-glutamine was the most efficient. Anaerobiosis inhibited only partially the oxidation of MTR to formate, KMB/HMB, and methionine by avocado extract. The role of O2 in the conversion of MTR to methionine is discussed.  相似文献   

2.
A salt-tolerant alkaliphilic actinomycete (strain Mit-1) was isolated from Mithapur (Western Coast, Gujarat, India) and identified as Streptomyces clavuligerus. Based on 16S rRNA gene sequence (EU146061) homology, it was found to be related to Streptomyces sp. (AY641538.1). The strain secreted alkaline protease optimally at 5% NaCl and pH 9 during the early stationary phase and could utilize the amino acids methionine, alanine, leucine, phenylalanine, tyrosine, tryptophan, arginine, asparagine, histidine, and glutamic acid as the sole source of nitrogen. Above their threshold levels, these amino acids caused repression of alkaline protease production. Protease production with methionine (120 U/mL), histidine (140 U/mL), and aspartic acid (118 U/mL) was comparable to that with complex medium (130 U/mL). However, the production increased with an increasing number of different amino acids in the growth medium. Repression of protease production as influenced by the amino acids generated valuable information on enzyme synthesis in actinomycetes, as such data is scarce. Optimization of the conditions for enzyme production by actinomycetes in general, and in haloalkaliphilic actinomycetes in particular, appears to be an attractive proposition for biocatalysis.  相似文献   

3.
Inhibition of ethylene production by rhizobitoxine   总被引:18,自引:13,他引:5       下载免费PDF全文
Rhizobitoxine, an inhibitor of methionine biosynthesis in Salmonella typhimurium, inhibited ethylene production about 75% in light-grown sorghum seedlings and in senescent apple tissue. Ethylene production stimulated by indoleacetic acid and kinetin in sorghum was similarly inhibited. With both apple and sorghum, the inhibition could only be partially relieved by additions of methionine. A methionine analogue, α-keto-γ-methylthiobutyric acid, which has been suggested as an intermediate between methionine and ethylene, had no effect on the inhibition.  相似文献   

4.
The contents of glutathione S-transferase (GST) subunits, carbonic anhydrase III (CAIII), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and a 230 kDa protein are affected by protein deprivation in mouse liver. In order to know if particular amino acids control these contents, the effects of feeding for 5 days with diets containing different amino acids were examined. After an exploration using SDS-PAGE analysis, the action of selected diets was further examined by distinct techniques. The 230 kDa protein was identified as fatty acid synthase (FAS) by both mass spectrometry and amino acid sequence analyses. Dietary tests showed that: (1) a protein-free diet (PFD) increased the content of glutathione S-transferases P1 and M1, and glyceraldehyde-3-phosphate dehydrogenase, while the content of glutathione S-transferase A3, fatty acid synthase and carbonic anhydrase III decreased; (2) a protein-free diet having either methionine or cysteine preserved the normal contents of glutathione S-transferases P1, A3, M1 and carbonic anydrase III; (3) a protein-free diet having threonine preserved partially the normal contents of glutathione S-transferases P1, A3, M1 and carbonic anhydrase III; (4) a protein-free diet having methionine, threonine and cysteine prevented in part the loss of fatty acid synthase; and (5) the glyceraldehyde-3-phosphate dehydrogenase content was controlled by increased carbohydrate level and/or by lower amino acid content of diets, but not by any specific amino acid. These data indicate that methionine and cysteine exert a main role on the control of liver glutathione S-transferases A3 and P1, and carbonic anhydrase III. Thus, they emerge necessary to prevent unsafe alterations of liver metabolism caused by protein deprivation.  相似文献   

5.
The pathway leading to the formation of ethylene as a secondary metabolite from methionine by Escherichia coli strain B SPAO has been investigated. Methionine was converted to 2-oxo-4-methylthiobutyric acid (KMBA) by a soluble transaminase enzyme. 2-Hydroxy-4-methylthiobutyric acid (HMBA) was also a product, but is probably not an intermediate in the ethylene-forming pathway. KMBA was converted to ethylene, methanethiol and probably carbon dioxide by a soluble enzyme system requiring the presence of NAD(P)H, Fe3+ chelated to EDTA, and oxygen. In the absence of added NAD(P)H, ethylene formation by cell-free extracts from KMBA was stimulated by glucose. The transaminase enzyme may allow the amino group to be salvaged from methionine as a source of nitrogen for growth. As in the plant system, ethylene produced by E. coli was derived from the C-3 and C-4 atoms of methionine, but the pathway of formation was different. It seems possible that ethylene production by bacteria might generally occur via the route seen in E. coli.Abbreviations EDTA ethylenediaminetetraacetic acid - HMBA 2-hydroxy-4-methylthiobutyric acid (methionine hydroxy analogue) - HSS high speed supernatant - KMBA 2-oxo-4-methylthiobutyric acid - PCS phase combining system  相似文献   

6.
Among amino acids screened for their potential to relieve wild and recombinant Escherichia coli from the negative effects of acetic acid, glycine, and methionine showed a sparing effect. In the presence of 2 g/L of acetic acid, addition of 0.5 g/L of glycine or methionine resulted in either a complete recovery or a further enhancement in the specific growth rate, while the enhancement was significant but not fully complete in the presence of 4 g/L of acetic acid. The addition of 0.5 g/L of methionine alleviated the negative effect of acetic acid on recombinant E. Coli growth to produce more beta-lactamase, which was encoded by plasmid pUC18. In continuous fermentation the methionine effect on recombinant. E. coli metabolism depended on dilution rate; at high dilution rates, above 0.4 h(-1), the methionine addition enhanced beta-lactamase production and reduced acetic acid formation, while at low dilution rates, below 0.3 h (-1), the effect was reversed. In def-batch fermentation with wild-type E. Coli, cell growth rate and cell yield from glucose were enhanced with methionine addition, while the acetic acid concentration reached over 4 g/L. (c) 1993 John Wiley & Sons, Inc.  相似文献   

7.
The effect of twenty five amino acid analogues at various concentrations upon the adult olive fruit fly Bactrocera oleae Gmelin (Diptera: Tephritidae), was tested. Insect survival was significantly shortened by the following amino acid analogues: (in parentheses are indicated the antagonized amino acids) D-cycloserine (alanine), L-glutamic acid--hydrazide (glutamine), DL-allyl-glycine (cysteine), L-canavanine (arginine), L-methionine-DL-sulfoximine (methionine) and 3,4-dehydro-DL-proline (proline). Fecundity was significantly reduced by the same analogues plus aminoethanesulfonic acid (glycine), taurine (alanine), L-norvaline (leucine), a-methyl-DL-serine (serine), DL-hydroxyglutamic acid (glutamic acid), (S)-2-(aminoethyl)-L-cysteine (lysine), a-methyl-DL-methionine (methionine) and a-methyl-DL-histidine (histidine). All the above amino acid analogues also depressed egg-hatching with the exception of taurine, DL-hydroxyglutamic acid, DL-allyl glycine, a-methyl-DL-methionine and a-methyl-DL-histidine. Finally, y-glutamyl-p-nitroanilide (glutamic acid), crotyl-glycine (methionine), DL-7-azatryptophan and 5-methyl-DL-tryptophan (tryptophan), DL-1,2,4 triazole-3-alanine (histidine) and DL-pipecolic acid (proline) did not affect any of the parameters tested.  相似文献   

8.
Aims:  Determination of pathways involved in synthesis of volatile sulphur compounds (VSC) from methionine by Oenococcus oeni isolated from wine.
Methods and Results:  Production of VSC by O. oeni from methionine was investigated during bacterial cultures and in assays performed in the presence of resting cells or protein fractions. Cells of O. oeni grown in a medium supplemented with methionine produced methanethiol, dimethyl disulphide, methionol and 3-(methylthio)propionic acid. Methional was also detected, but only transiently during the exponential growth phase. It was converted to methionol and 3-(methylthio) propionic acid in assays. Although this acid could be produced alternatively from 2-oxo-4-(methylthio) butyric acid (KMBA) by oxidative decarboxylation. In addition, KMBA was a precursor for methanethiol and dimethyl disulphide synthesis. Interestingly, assays with resting cells and protein fractions suggested that a specific enzyme could be involved in this conversion in O. oeni .
Conclusion:  This work shows that methional and KMBA are the key intermediates for VSC synthesis from methionine in O. oeni . Putative enzymatic and chemical pathways responsible for the production of these VSC are discussed.
Significance and impact of the study:  This work confirms the capacity of O. oeni to metabolize methionine and describes the involvement of potential enzymatic pathways.  相似文献   

9.
Growth of Escherichia coli strain B SPAO on a medium containing glucose, NH4Cl and methionine resulted in production of ethylene into the culture headspace. When methionine was excluded from the medium there was little formation of ethylene. Ethylene formation in methionine-containing medium occurred for a brief period at the end of exponential growth. Ethylene formation was stimulated by increasing the medium concentration of Fe3+ when it was chelated to EDTA. Lowering the medium phosphate concentration also appeared to stimulate ethylene formation. Ethylene formation was inhibited in cultures where NH4Cl remained in the stationary phase. Synthesis of the ethylene-forming enzyme system was determined by harvesting bacteria at various stages of growth and assaying the capacity of the bacteria to form ethylene from methionine. Ethylene forming capacity was greatest in cultures harvested immediately before and during the period of optimal ethylene formation. It is concluded that ethylene production by E. coli exhibits the typical properties of secondary metabolism.Abbreviations HMBA 2-Hydroxy-4-methylthiobutyric acid (methionine hydroxy analogue) - KMBA 2-keto-4-methylthiobutyric acid - MOPS 3-[N-morpholino] propanesulphonic acid  相似文献   

10.
《Phytochemistry》1987,26(10):2655-2660
Inhibition of the enzymes involved in the production of 1-aminocyclopropane-1-carboxylic acid (ACC) and the subsequent salvage of methionine from 5′-methylthioadenosine (MTA) was studied. Possible product inhibition of ACC synthase, which converts S-adenosylmethionine (SAM) to ACC and MTA, and MTA nucleosidase, which hydrolyses MTA to 5-methylthioribose (MTR) and adenine, was investigated. ACC synthase was weakly inhibited by MTA (Ki = 0.2mM). MTA nucleosidase was inhibited by adenine competitively (Ki = 40μM), but not by MTR. Some analogues of the enzymes' substrates were inhibitory. ACC synthase was strongly and competitively inhibited by sinefungin, a SAM analogue (Ki = 2μM); MTA nucleosidase was inhibited by various MTA analogues, including 5′-chloroformycin, 5′-chloroadenosine, and 5′-ethylthioadenosine. The conversion of MTR to methionine in avocado extract was inhibited by the MTR analogues 5-chlororibose and 5-ethylthioribose, which exert their inhibitory effects by inhibiting MTR kinase. The capacity to convert MTR to methionine in ripening apple tissue appears to be ample; thus, this conversion does not appear to be a limiting factor of ethylene production.  相似文献   

11.
Methionine is an essential amino acid involved in critical metabolic process, and regulation of methionine flux through metabolism is important to supply this amino acid for cell needs. Elevation in plasma methionine commonly occurs due to mutations in methionine-metabolizing enzymes, such as methionine adenosyltransferase. Hypermethioninemic patients exhibit clinical manifestations, including neuronal and liver disorders involving inflammation and tissue injury, which pathophysiology is not completely established. Here, we hypothesize that alterations in macrophage inflammatory response may contribute to deleterious effects of hypermethioninemia. To this end, macrophage primary cultures were exposed to methionine (1 mM) and/or its metabolite methionine sulfoxide (0.5 mM), and M1/proinflammatory or M2/anti-inflammatory macrophage polarization was evaluated. In addition, inflammation-related pathways including oxidative stress parameters, as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities; reactive oxygen species (ROS) production, and purinergic signaling, as ATP/ADP/AMPase activities, were investigated. Methionine and/or methionine sulfoxide induced M1/classical macrophage activation, which is related to proinflammatory responses characterized by increased iNOS activity and TNF-α release. Further experiments showed that treatments promoted alterations on redox state of macrophages by differentially modulated SOD and CAT activities and ROS levels. Finally, methionine and/or methionine sulfoxide treatment also altered the extracellular nucleotide metabolism, promoting an increase of ATPase/ADPase activities in macrophages. In conclusion, these findings contribute to better understand the participation of proinflammatory responses in cell injury observed in hypermethioninemic patients.  相似文献   

12.
Galactose, sucrose, and glucose (50 millimolar) applied to tobacco leaf discs (Nicotiana tabacum L. cv `Xanthi') during a prolonged incubation (5-6 d) markedly stimulated ethylene production which, in turn, could be inhibited by aminoethoxyvinylglycine (2-amino-4-(2′-aminoethoxy)-trans-3-butenoic acid) (AVG) or Co2+ ions. These three tested sugars also stimulated the conversion of l-[3,4-14C]methionine to [14C]1-amino-cyclopropane-1-carboxylic acid (ACC) and to [14C]ethylene, thus indicating that the carbohydrates-stimulated ethylene production proceeds from methionine via the ACC pathway. Sucrose concentrations above 25 mm considerably enhanced ACC-dependent ethylene production, and this enhancement was related to the increased respiratory carbon dioxide. However, sucrose by itself could directly promote the step of ACC conversion to ethylene, since low sucrose concentrations (1-25 mm) enhanced ACC-dependent ethylene production also in the presence of 15% CO2.  相似文献   

13.
Many reservoirs for water supply have been troubled with earthy-musty odour compounds—2-methylisoborneol (2-MIB) and geosmin. Both of these compounds are terpenoid and related to the metabolite of l-methionine. An experiment using [CD3]methionine and [14CH3]methionine showed that the C-2 methyl group in 2-MIB originate from l-methionine. In the incubation experiment with 10–1000 mg/l of l-methionine, 2-MIB and geosmin appeared in the earlier stages, in greater amounts than in the control. The maximum production of 2-MIB and geosmin increased considerably in the experiments with 10 and 100 mg/l of l-methionine. The effective time for l-methionine addition was after 1 d. Additions after 3 and 5 d were similar to the control. In the incubation experiment with 10–1000 mg/l of folic acid, 2-MIB and geosmin increased only during the 1000 mg/l addition. There seems to be little doubt that l-methionine takes part in the metabolism of 2-MIB and geosmin.  相似文献   

14.
Yu YB  Yang SF 《Plant physiology》1979,64(6):1074-1077
Auxin is known to stimulate greatly both C2H4 production and the conversion of methionine to ethylene in vegetative tissues, while amino-ethoxyvinylglycine (AVG) or Co2+ ion effectively block these processes. To identify the step in the ethylene biosynthetic pathway at which indoleacetic acid (IAA) and AVG exert their effects, [3-14C]methionine was administered to IAA or IAA-plus-AVG-treated mung bean hypocotyls, and the conversion of methionine to S-adenosylmethionine (SAM), 1-amino-cyclopropane-1-carboxylic acid (ACC), and C2H4 was studied. The conversion of methionine to SAM was unaffected by treatment with IAA or IAA plus AVG, but active conversion of methionine to ACC was found only in tissues which were treated with IAA and which were actively producing ethylene. AVG treatment abolished both the conversion of methionine to ACC and ethylene production. These results suggest that in the ethylene biosynthetic pathway (methionine → SAM → ACC → C2H4) IAA stimulates C2H4 production by inducing the synthesis or activation of ACC synthase, which catalyzes the conversion of SAM to ACC. Indeed, ACC synthase activity was detected only in IAA-treated tissues and its activity was completely inhibited by AVG. This conclusion was supported by the observation that endogenous ACC accumulated after IAA treatment, and that this accumulation was completely eliminated by AVG treatment. The characteristics of Co2+ inhibition of IAA-dependent and ACC-dependent ethylene production were similar. The data indicate that Co2+ exerts its effect by inhibiting the conversion of ACC to ethylene. This conclusion was further supported by the observation that when Co2+ was administered to IAA-treated tissues, endogenous ACC accumulated while ethylene production declined.  相似文献   

15.
Ethylene biosynthesis in fruit tissues   总被引:13,自引:8,他引:5       下载免费PDF全文
Tracer studies with avocado tissues indicate that methionine is converted to ethylene at stages of the climacteric rise and the climacteric peak, but not at the preclimacteric stage. The results suggest that the control of ethylene biosynthesis is at a step after methionine is synthesized. The endogenous content of methionine was found to be so low that methionine must be actively turned over for ethylene biosynthesis during the stages when the rate of ethylene production is high. Oxygen was found to be essential for this conversion, indicating that at least one of the steps in conversion of methionine to ethylene is oxygen-dependent. The ability of methionine and its keto analogue (α-keto-γ-methylthiobutyric acid) to serve as ethylene precursors by apple tissues was compared. Chemical and kinetic evidence support the view that methionine is a closer precursor of ethylene than its keto analogue.  相似文献   

16.
Inhibition of Ethylene Production in Penicillium digitatum   总被引:2,自引:2,他引:0       下载免费PDF全文
Production of ethylene by static cultures of Penicillium digitatum, which utilize glutamate and α-ketoglutarate as ethylene precursors, was inhibited by methionine, methionine sulfoxide, methionine sulfone, and methionine sulfoximine. Rhizobitoxine did not affect ethylene production but its ethoxy and methoxy analogues were effective inhibitors of ethylene production; its saturated methoxy analogue and kainic acid stimulated ethylene production. Tracer studies showed that the inhibitors blocked the conversion of [3H]glutamate into [3H]ethylene.

In shake cultures of this fungus, which utilize methionine as the ethylene precursor, rhizobitoxine and its unsaturated analogues all inhibited, while the saturated methoxy analogue stimulated ethylene production. In both types of cultures inhibition was irreversible and was diminished by increasing concentrations of the ethylene precursor. The inhibitory activity or lack of it by rhizobitoxine and its analogues appears to be a function of their structural resemblance to glutamate and methionine as well as of their size and stereoconfiguration. These data suggest similarities between the ethylene-forming system in the fungus and in higher plants despite differences in precursors under some cultural conditions.

  相似文献   

17.
This study was conducted to determine if aminoethoxyvinylglycine (AVG) insensitivity in avocado (Persea americana Mill., Lula, Haas, and Bacon) tissue was due to an alternate pathway of ethylene biosynthesis from methionine. AVG, at 0.1 millimolar, had little or no inhibitory effect on either total ethylene production or [(14)C] ethylene production from [(14)C]methionine in avocado tissue at various stages of ripening. However, aminoxyacetic acid (AOA), which inhibits 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (the AVG-sensitive enzyme of ethylene biosynthesis), inhibited ethylene production in avocado tissue. Total ethylene production was stimulated, and [(14)C]ethylene production from [(14)C]methionine was lowered by treating avocado tissue with 1 millimolar ACC. An inhibitor of methionine adenosyltransferase (EC 2.5.1.6), l-2-amino-4-hexynoic acid (AHA), at 1.5 millimolar, effectively inhibited [(14)C]ethylene production from [(14)C]methionine in avocado tissue but had no effect on total ethylene production during a 2-hour incubation. Rates of [(14)C]AVG uptake by avocado and apple (Malus domestica Borkh., Golden Delicious) tissues were similar, and [(14)C]AVG was the only radioactive compound in alcohol-soluble fractions of the tissues. Hence, AVG-insensitivity in avocado tissue does not appear to be due to lack of uptake or to metabolism of AVG by avocado tissue. ACC synthase activity in extracts of avocado tissue was strongly inhibited (about 60%) by 10 micromolar AVG. Insensitivity of ethylene production in avocado tissue to AVG may be due to inaccessibility of ACC synthase to AVG. AVG-resistance in the avocado system is, therefore, different from that of early climacteric apple tissue, in which AVG-insensitivity of total ethylene production appears to be due to a high level of endogenous ACC relative to its rate of conversion to ethylene. However, the sensitivity of the avocado system to AOA and AHA, dilution of labeled ethylene production by ACC, and stimulation of total ethylene production by ACC provide evidence for the methionine --> SAM --> ACC --> ethylene pathway in avocado and do not suggest the operation of an alternate pathway.  相似文献   

18.
Stem sections of etiolated pea seedlings (Pisum sativum L. cv. Alaska) were incubated overnight on tracer amounts of l-[U-(14)C]methionine and, on the following morning, on 0.1 millimolar indoleacetic acid to induce ethylene formation. Following the overnight incubation, over 70% of the radioactivity in the soluble fraction was shown to be associated with S-methylmethionine (SMM). The specific radioactivity of the ethylene evolved closely paralleled that of carbon atoms 3 and 4 of methionine extracted from the tissue and was always higher than that determined for carbon atoms 3 and 4 of extracted SMM.Overnight incubation of pea stem sections on 1 millimolar methionine enhanced indoleacetic acid-induced ethylene formation by 5 to 10%. Under the same conditions, 1 millimolar homocysteine thiolactone increased ethylene synthesis by 20 to 25%, while SMM within a concentration range of 0.1 to 10 millimolar did not influence ethylene production. When unlabeled methionine or homocysteine thiolactone was applied to stem sections which had been incubated overnight in l-[U-(14)C]methionine, the specific radioactivity of the ethylene evolved was considerably lowered. Application of unlabeled SMM reduced the specific radioactivity of ethylene only slightly.  相似文献   

19.
In the reaction system containing amino acid, tea leaves extract and (?)-epicatechin, some amino acids such as glycine, alanine, valine, leucine, isoleucine, methionine and phenylalanine produced formaldehyde, acetaldehyde, isobutyraldehyde, isovaleraldehyde, 2-methylbutanal, methional and phenylacetaldehyde, respectively. The production of these aldehydes was regarded to proceed as Strecker degradation. On the production of phenylacetaldehyde it was revealed in the tea leaves extract-phenol-phenylalanine system that: 1) di-phenol was the most effective co-factor in comparison with mono- and tri-phenols; 2) the optimum concentration of (?)-epicatechin was 5×10-4M and the production was depressed at the concentration more than 5×l0-4M; 3) the production decreased by diluting tea leaves extract.  相似文献   

20.
The current experiment aimed to study whether interactions with lipid metabolism possibly might explain the relative increased liver weight obtained in fish fed sub-optimal methionine levels. A basal diet based on a blend of plant proteins which is low in methionine (1.6 g Met/16 g N) was compared to a methionine adequate diet (2.2 g Met/16 g N) prepared by adding dl-methionine (2.4 g/kg) to the basal diet in the expense of wheat grain. Fish oil was used as the lipid source. The diets were balanced in all nutrients except methionine. The diets were fed to Atlantic salmon (500 g BW) for a period of 3 months. Feed intake did not differ, rendering the intake of all nutrients except methionine equal. Fish fed the low methionine diet had an increased liver size relative to body weight, indicating fat deposition in the liver. Fish given the sub-optimal methionine diet showed about six times higher fatty acid synthase (FAS) activity as compared to the fish fed the adequate methionine diet, indicating a higher de novo lipogenesis. A significant rise in the liver 18:1 to 18:0 fatty acid ratios also supported storage of lipids over fatty acid oxidation. Indeed, methionine limitation resulted in significantly higher TAG concentrations in the liver. Sub-optimal dietary methionine also resulted in lower hepatic taurine concentrations and the total bile acids concentrations were reduced in faeces and tended to be reduced in plasma. Taken together, our data show that salmon fed sub-optimal methionine levels had increased relative liver weight and developed signs commonly described in the early stage of non-alcoholic fatty liver disease in rodent models (increased FAS activity, changed fatty acid ratios and TAG accumulation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号