首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Simple deterministic models are still at the core of theoretical epidemiology despite the increasing evidence for the importance of contact networks underlying transmission at the individual level. These mean-field or 'compartmental' models based on homogeneous mixing have made, and continue to make, important contributions to the epidemiology and the ecology of infectious diseases but fail to reproduce many of the features observed for disease spread in contact networks. In this work, we show that it is possible to incorporate the important effects of network structure on disease spread with a mean-field model derived from individual level considerations. We propose that the fundamental number known as the basic reproductive number of the disease, R0, which is typically derived as a threshold quantity, be used instead as a central parameter to construct the model from. We show that reliable estimates of individual level parameters can replace a detailed knowledge of network structure, which in general may be difficult to obtain. We illustrate the proposed model with small world networks and the classical example of susceptible-infected-recovered (SIR) epidemics.  相似文献   

2.
The relating of deterministic, mean-field models into network models, where epidemic spread occurs between interconnected susceptible and infectious individuals or populations, requires careful consideration. Here, we discuss models that consider differently the manner in which contact rate and infectiousness change over time, with different algorithms suitable for different underlying processes. Though these models give coincidental results to the mean-field in the case of large, highly connected networks, the results when sparsely connected networks are considered may differ. Different subsets of the parameters from the mean-field epidemic (R(0), generation time, infectiousness, etc.) are preserved in each case. Despite these differences, simulated epidemics generated under some model architectures are insensitive to the average degree of contact amongst nodes, k. Model-based estimates of k may be model dependent, and must therefore be viewed with caution.  相似文献   

3.

The central question of systems biology is to understand how individual components of a biological system such as genes or proteins cooperate in emerging phenotypes resulting in the evolution of diseases. As living cells are open systems in quasi-steady state type equilibrium in continuous exchange with their environment, computational techniques that have been successfully applied in statistical thermodynamics to describe phase transitions may provide new insights to the emerging behavior of biological systems. Here we systematically evaluate the translation of computational techniques from solid-state physics to network models that closely resemble biological networks and develop specific translational rules to tackle problems unique to living systems. We focus on logic models exhibiting only two states in each network node. Motivated by the apparent asymmetry between biological states where an entity exhibits boolean states i.e. is active or inactive, we present an adaptation of symmetric Ising model towards an asymmetric one fitting to living systems here referred to as the modified Ising model with gene-type spins. We analyze phase transitions by Monte Carlo simulations and propose a mean-field solution of a modified Ising model of a network type that closely resembles a real-world network, the Barabási–Albert model of scale-free networks. We show that asymmetric Ising models show similarities to symmetric Ising models with the external field and undergoes a discontinuous phase transition of the first-order and exhibits hysteresis. The simulation setup presented herein can be directly used for any biological network connectivity dataset and is also applicable for other networks that exhibit similar states of activity. The method proposed here is a general statistical method to deal with non-linear large scale models arising in the context of biological systems and is scalable to any network size.

  相似文献   

4.
The nature of pathogen transport mechanisms strongly determines the spatial pattern of disease and, through this, the dynamics and persistence of epidemics in plant populations. Up to recently, the range of possible mechanisms or interactions assumed by epidemic models has been limited: either independent of the location of individuals (mean-field models) or restricted to local contacts (between nearest neighbours or decaying exponentially with distance). Real dispersal processes are likely to lie between these two extremes, and many are well described by long-tailed contact kernels such as power laws. We investigate the effect of different spatial dispersal mechanisms on the spatio-temporal spread of disease epidemics by simulating a stochastic Susceptible-infective model motivated by previous data analyses. Both long-term stationary behaviour (in the presence of a control or recovery process) and transient behaviour (which varies widely within and between epidemics) are examined. We demonstrate the relationship between epidemic size and disease pattern (characterized by spatial autocorrelation), and its dependence on dispersal and infectivity parameters. Special attention is given to boundary effects, which can decrease disease levels significantly relative to standard, periodic geometries in cases of long-distance dispersal. We propose and test a definition of transient duration which captures the dependence of transients on dispersal mechanisms. We outline an analytical approach that represents the behaviour of the spatially-explicit model, and use it to prove that the epidemic size is predicted exactly by the mean-field model (in the limit of an infinite system) when dispersal is sufficiently long ranged (i.e. when the power-law exponent a相似文献   

5.
The relationship between system-level and subsystem-level master equations is investigated and then utilised for a systematic and potentially automated derivation of the hierarchy of moment equations in a susceptible-infectious-removed (SIR) epidemic model. In the context of epidemics on contact networks we use this to show that the approximate nature of some deterministic models such as mean-field and pair-approximation models can be partly understood by the identification of implicit anomalous terms. These terms describe unbiological processes which can be systematically removed up to and including the nth order by nth order moment closure approximations. These terms lead to a detailed understanding of the correlations in network-based epidemic models and contribute to understanding the connection between individual-level epidemic processes and population-level models. The connection with metapopulation models is also discussed. Our analysis is predominantly made at the individual level where the first and second order moment closure models correspond to what we term the individual-based and pair-based deterministic models, respectively. Matlab code is included as supplementary material for solving these models on transmission networks of arbitrary complexity.  相似文献   

6.
We investigate the dynamics of a simple epidemiological model for the invasion by a pathogen strain of a population where another strain circulates. We assume that reinfection by the same strain is possible but occurs at a reduced rate due to acquired immunity. The rate of reinfection by a distinct strain is also reduced due to cross-immunity. Individual based simulations of this model on a 'small-world' network show that the proportion of local contacts in the host contact network structure significantly affects the outcome of such an invasion, and as a consequence will affect the patterns of pathogen evolution. In particular, hosts interacting through a 'small-world' network of contacts support lower prevalence of infection than well-mixed populations, and the region in parameter space for which an invading strain can become endemic and coexist with the circulating strain is smaller, reducing the potential to accommodate pathogen diversity. We discuss the underlying mechanisms for the reported effects, and we propose an effective mean-field model to account for the contact structure of the host population in 'small-world' networks.  相似文献   

7.
Contact structure is believed to have a large impact on epidemic spreading and consequently using networks to model such contact structure continues to gain interest in epidemiology. However, detailed knowledge of the exact contact structure underlying real epidemics is limited. Here we address the question whether the structure of the contact network leaves a detectable genetic fingerprint in the pathogen population. To this end we compare phylogenies generated by disease outbreaks in simulated populations with different types of contact networks. We find that the shape of these phylogenies strongly depends on contact structure. In particular, measures of tree imbalance allow us to quantify to what extent the contact structure underlying an epidemic deviates from a null model contact network and illustrate this in the case of random mixing. Using a phylogeny from the Swiss HIV epidemic, we show that this epidemic has a significantly more unbalanced tree than would be expected from random mixing.  相似文献   

8.
We compare two broad types of empirically grounded random network models in terms of their abilities to capture both network features and simulated Susceptible-Infected-Recovered (SIR) epidemic dynamics. The types of network models are exponential random graph models (ERGMs) and extensions of the configuration model. We use three kinds of empirical contact networks, chosen to provide both variety and realistic patterns of human contact: a highly clustered network, a bipartite network and a snowball sampled network of a “hidden population”. In the case of the snowball sampled network we present a novel method for fitting an edge-triangle model. In our results, ERGMs consistently capture clustering as well or better than configuration-type models, but the latter models better capture the node degree distribution. Despite the additional computational requirements to fit ERGMs to empirical networks, the use of ERGMs provides only a slight improvement in the ability of the models to recreate epidemic features of the empirical network in simulated SIR epidemics. Generally, SIR epidemic results from using configuration-type models fall between those from a random network model (i.e., an Erdős-Rényi model) and an ERGM. The addition of subgraphs of size four to edge-triangle type models does improve agreement with the empirical network for smaller densities in clustered networks. Additional subgraphs do not make a noticeable difference in our example, although we would expect the ability to model cliques to be helpful for contact networks exhibiting household structure.  相似文献   

9.
Hadidjojo J  Cheong SA 《PloS one》2011,6(7):e22124
Controlling severe outbreaks remains the most important problem in infectious disease area. With time, this problem will only become more severe as population density in urban centers grows. Social interactions play a very important role in determining how infectious diseases spread, and organization of people along social lines gives rise to non-spatial networks in which the infections spread. Infection networks are different for diseases with different transmission modes, but are likely to be identical or highly similar for diseases that spread the same way. Hence, infection networks estimated from common infections can be useful to contain epidemics of a more severe disease with the same transmission mode. Here we present a proof-of-concept study demonstrating the effectiveness of epidemic mitigation based on such estimated infection networks. We first generate artificial social networks of different sizes and average degrees, but with roughly the same clustering characteristic. We then start SIR epidemics on these networks, censor the simulated incidences, and use them to reconstruct the infection network. We then efficiently fragment the estimated network by removing the smallest number of nodes identified by a graph partitioning algorithm. Finally, we demonstrate the effectiveness of this targeted strategy, by comparing it against traditional untargeted strategies, in slowing down and reducing the size of advancing epidemics.  相似文献   

10.
1. Geostatistical models based on Euclidean distance fail to represent the spatial configuration, connectivity, and directionality of sites in a stream network and may not be ecologically relevant for many chemical, physical and biological studies of freshwater streams. Functional distance measures, such as symmetric and asymmetric hydrologic distance, more accurately represent the transfer of organisms, material and energy through stream networks. However, calculating the hydrologic distances for a large study area remains challenging and substituting hydrologic distance for Euclidean distance may violate geostatistical modelling assumptions. 2. We provide a review of geostatistical modelling assumptions and discuss the statistical and ecological consequences of substituting hydrologic distance measures for Euclidean distance. We also describe a new family of autocovariance models that we developed for stream networks, which are based on hydrologic distance measures. 3. We describe the geographical information system (GIS) methodology used to generate spatial data necessary for geostatistical modelling in stream networks. We also provide an example that illustrates the methodology used to create a valid covariance matrix based on asymmetric hydrologic distance and weighted by discharge volume, which can be incorporated into common geostatistical models. 4. The methodology and tools described supply ecologically meaningful and statistically valid geostatistical models for stream networks. They also provide stream ecologists with the opportunity to develop their own functional measures of distance and connectivity, which will improve geostatistical models developed for stream networks in the future. 5. The GIS tools presented here are being made available in order to facilitate the application of valid geostatistical modelling in freshwater ecology.  相似文献   

11.
A growing number of studies are investigating the effect of contact structure on the dynamics of epidemics in large-scale complex networks. Whether findings thus obtained apply also to networks of small size, and thus to many real-world biological applications, is still an open question. We use numerical simulations of disease spread in directed networks of 100 individual nodes with a constant number of links. We show that, no matter the type of network structure (local, small-world, random and scale-free), there is a linear threshold determined by the probability of infection transmission between connected nodes and the probability of infection persistence in an infected node. The threshold is significantly lower for scale-free networks compared to local, random and small-world ones only if super-connected nodes have a higher number of links both to and from other nodes. The starting point, the node at which the epidemic starts, does not affect the threshold conditions, but has a marked influence on the final size of the epidemic in all kinds of network. There is evidence that contact structure has an influence on the average final size of an epidemic across all starting nodes, with significantly lower values in scale-free networks at equilibrium. Simulations in scale-free networks show a distinctive time-series pattern, which, if found in a real epidemic, can be used to infer the underlying network structure. The findings have relevance also for meta-population ecology and species conservation.  相似文献   

12.
Heterogeneity in the number of potentially infectious contacts amongst members of a population increases the basic reproduction ratio (R(0)) and markedly alters disease dynamics compared to traditional mean-field models. Most models describing transmission on contact networks only account for one specific route of transmission. However, for many infectious diseases multiple routes of transmission exist. The model presented here captures transmission through a well defined network of contacts, complemented by mean-field type transmission amongst the nodes of the network that accounts for alternative routes of transmission. The impact of these combined transmission mechanisms on the final epidemic size is investigated analytically. The analytic predictions for the purely mean-field case and the transmission through the network-only case are confirmed by individual-based network simulations. There is a critical transmission potential above which an increased contribution of the mean-field type transmission increases the final epidemic size while an increased contribution of the transmission through the network decreases it. Below the critical transmission potential the opposite effect is observed.  相似文献   

13.
Comparisons between mass-action or “random” network models and empirical networks have produced mixed results. Here we seek to discover whether a simulated disease spread through randomly constructed networks can be coerced to model the spread in empirical networks by altering a single disease parameter — the probability of infection. A stochastic model for disease spread through herds of cattle is utilised to model the passage of an SEIR (susceptible–latent–infected–resistant) through five networks. The first network is an empirical network of recorded contacts, from four datasets available, and the other four networks are constructed from randomly distributed contacts based on increasing amounts of information from the recorded network. A numerical study on adjusting the value of the probability of infection was conducted for the four random network models. We found that relative percentage reductions in the probability of infection, between 5.6% and 39.4% in the random network models, produced results that most closely mirrored the results from the empirical contact networks. In all cases tested, to reduce the differences between the two models, required a reduction in the probability of infection in the random network.  相似文献   

14.
The spatial-temporal dynamics of farm animal diseases depend both on disease specific processes and the underlying contact network between farms. Indirect transmission via free-living bacteria in the environment is an important transmission route and contributes significantly to the dynamics. The pair-wise model has been developed to include both direct transmission and indirect transmission via free stages. The model is compared with stochastic simulations of epidemics on contact networks. The network framework is applied to the investigation of the epidemiological dynamics of between-herd transmission of Salmonella spp. The main results help to explain differences in observed epidemiological patterns and to identify possible causes for different strains of Salmonella developing so much variation in their infection dynamics in UK dairy herds. Numerical results show that shorter infectious period, more persistent immune response and more rapid removal of faeces result in a lower prevalence of infection and a greater tendency for (damped) oscillation. A possible control strategy is consequently suggested. Furthermore, the effect of network structure on long-term dynamics is examined.  相似文献   

15.
We study spatial stochastic epidemic models called households models. The households models have more than two states at each vertex of a graph in contrast to the contact process. We show that, in the households models on trees, two thresholds of infection rates characterize epidemics. The global critical infection rate is defined by epidemic occurrence. However, some households may be eventually disease-free even for infection rates above the global critical infection rate, in as far as they are smaller than the local critical point. Whether the global one is smaller than the local one depends on the graph and the model. We show that, in the households models, the global one is smaller than the local one on homogeneous trees.  相似文献   

16.
Using network models to approximate spatial point-process models   总被引:2,自引:0,他引:2  
Spatial effects are fundamental to ecological and epidemiological systems, yet the incorporation of space into models is potentially complex. Fixed-edge network models (i.e. networks where each edge has the same fixed strength of interaction) are widely used to study spatial processes but they make simplistic assumptions about spatial scale and structure. Furthermore, it can be difficult to parameterize such models with empirical data. By comparison, spatial point-process models are often more realistic than fixed-edge network models, but are also more difficult to analyze. Here we develop a moment closure technique that allows us to define a fixed-edge network model which predicts the prevalence and rate of epidemic spread of a continuous spatial point-process epidemic model. This approach provides a systematic method for accurate parameterization of network models using data from continuously distributed populations (such as data on dispersal kernels). Insofar as point-process models are accurate representations of real spatial biological systems, our example also supports the view that network models are realistic representations of space.  相似文献   

17.
Dynamics and Control of Diseases in Networks with Community Structure   总被引:1,自引:0,他引:1  
The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc.) depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies.  相似文献   

18.
Exact results have previously been obtained concerning the spread of infection in continuous space contact models describing a class of multitype epidemics. The Pandemic Theorem gave a lower bound for the spatial final size. A discrete space model is considered. A simpler, more direct proof based on an infinite matrix formulation of the final size equations is used to obtain the pandemic result for this model. An upper bound is obtained, which is valid for both continuous and discrete space models. This enables a limiting result to be obtained for the spatial final size when the amount of initial infection tends to zero.  相似文献   

19.
Since the model proposed by Frank (Frank FC, Biochem Biophys Acta 1953;11:459-463), several alternative models have been developed to explain how an asymmetric non-racemic steady state can be reached by a chirally symmetric chemical reactive system. This paper explains how a stable non-racemic regime can be obtained as a symmetry breaking occurring in a far-from-equilibrium reactive system initiated with an initial imbalance. Departing from the variations around the original Frank's model that are commonly described in the literature, i.e. open-flow systems of direct autocatalytic reactions, we discuss recent developments emphasizing both an active recycling of components and an autocatalytic network of simple reactions. We will present our APED model as the most natural realization of such thermodynamic openness and non-equilibrium, of recycling and of network autocatalysis, each of these in prebiotic conditions. The different experimental and theoretical models in the literature will be classified according to mechanism. The place and role of such self-structured networks responsible for the presence of homochirality in the primitive Earth will be detailed.  相似文献   

20.
The dynamic nature of contact patterns creates diverse temporal structures. In particular, empirical studies have shown that contact patterns follow heterogeneous inter-event time intervals, meaning that periods of high activity are followed by long periods of inactivity. To investigate the impact of these heterogeneities in the spread of infection from a theoretical perspective, we propose a stochastic model to generate temporal networks where vertices make instantaneous contacts following heterogeneous inter-event intervals, and may leave and enter the system. We study how these properties affect the prevalence of an infection and estimate , the number of secondary infections of an infectious individual in a completely susceptible population, by modeling simulated infections (SI and SIR) that co-evolve with the network structure. We find that heterogeneous contact patterns cause earlier and larger epidemics in the SIR model in comparison to homogeneous scenarios for a vast range of parameter values, while smaller epidemics may happen in some combinations of parameters. In the case of SI and heterogeneous patterns, the epidemics develop faster in the earlier stages followed by a slowdown in the asymptotic limit. For increasing vertex turnover rates, heterogeneous patterns generally cause higher prevalence in comparison to homogeneous scenarios with the same average inter-event interval. We find that is generally higher for heterogeneous patterns, except for sufficiently large infection duration and transmission probability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号