首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants with symptoms of barley yellow dwarf virus (BYDV) obtained in infection feeding assays of aphids collected in the field in Idaho between 1986 and 1988 were tested for virus transmissibility by possible aphid vectors. Isolates obtained during 1987–1988 were also tested with a range of polyclonal antisera which distinguished PAV, MAV, SGV, RPV and RMV serotypes. In 1989 some Idaho (ID) BYDV isolates, maintained as standards for comparison, were serotyped and tested for aphid transmissibility, using 11 species of aphids. There was not always the expected correspondence between serotype and vector specificity for ID isolates. For isolates obtained from field-collected Rhopalosiphum padi, vector transmissibility and serotype corresponded with previous reports; however, 44% of isolates which were serotyped as RMV were also transmissible by species other than Rhopalosiphum maidis. Similarly, the transmissibility of the ID laboratory standards did not always conform to the reported vector specificity of serotypes. The laboratory ID-MAV culture was transmitted by Metopolophium dirhodum and Myzus persicae as well as by Sitobion avenae. The laboratory ID-SGV culture was transmitted by R. padi and 5. avenae as well as by Schizaphis graminum. The ID-RPV culture was transmitted by S. graminum and Rhopalosiphum insertum as well as R. padi. Both of two laboratory ID-RMV cultures were transmissible by R. insertum and R. padi transmitted one of them. The results indicate that, for isolates collected in Idaho, vector specificity cannot be assumed from their serotypes.  相似文献   

2.
Enzyme-linked immunosorbent assay (ELISA)-based surveys of the occurrence of five barley yellow dwarf virus (BYDV) serotypes (MAV, PAV and SGV in “Group 1”; RPV and RMV in “Group 2”) in CIMMYT bread wheat nurseries and other small grain crops in various locations world-wide were undertaken in 1988, 1989 and 1990. The objective was to investigate the relative occurrence of BYDV serotypes in areas relevant to CIMMYT cereal breeding programs. Overall, MAV and PAV serotypes predominated in the samples collected, though their relative frequencies depended on the location. SGV serotypes were uncommon in most locations. Group 2 serotypes occurred widely, but RMV serotypes were more common than RPV serotypes.  相似文献   

3.
During the mid-1980s, Sitobion avenae became recognised as an important vector of barley yellow dwarf virus (BYDV) in the Vale of York. A field trial at the University of Leeds Farm, North Yorkshire, was carried out during the autumn/winter of 1984-85 to evaluate different control procedures against S. avenae-transmitted BYDV and to investigate its epidemiology. Winter barley was sown on three dates in September, and plots were sprayed with either deltamethrin, demeton-S-methyl or pirimicarb on one of three dates between mid-October and mid-November, making a factorial design. Rhopalosiphum padi, the main vector of BYDV in southern England, were rarely found during the experiment, but the numbers of S. avenae were much higher, reaching a peak of 21% of plants infested in the unsprayed plots of the first sowing date. Single applications of each insecticide reduced populations of S. avenae to zero. Some treatments, particularly in the early sown plots and those treated with pirimicarb, however, did allow some recolonisation, and thus led to increased virus incidence and decreased yields. Sprays applied before the end of the migration of S. avenae were more efficient at controlling BYDV if the insecticide was persistent, otherwise a spray after this period, in November, was more effective. Virus incidence, although reduced by sprays, was generally low in plots sown on 18 and 27 September. In contrast, about 11% of plants were infected in unsprayed plots sown on 6 September and a small yield benefit was obtained with insecticidal treatments. Enzyme-linked immunosorbent assay (ELISA) of plants taken from the plots indicated that MAV- and PAV-like strains were present, and were most likely to have been transmitted by S. avenae.  相似文献   

4.
2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), a hydroxamic acid (Hx) occurring in wheat, was shown to deter feeding by the aphid Rhopalosiphum padi (L.), and to reduce BYDV transmission to the plant. Dual choice tests with wheat leaves showed the preferential settlement of aphids on leaves with lower levels of DIMBOA. Electric monitoring of aphid feeding behaviour showed that in seedlings with higher DIMBOA levels fewer aphids reached the phloem and they needed longer times to contact a phloem vessel than in those with lower levels. When aphids carrying BYDV were allowed to feed on wheat cultivars with different DIMBOA levels, fewer plants were infected with BYDV in the higher DIMBOA cultivars than in the lower ones. Preliminary field experiments showed a tendency for wheat cultivars with higher Hx levels to be more tolerant to infection by BYDV than lower Hx level ones.  相似文献   

5.
Aphid (Homoptera: Aphididae) seasonal flight activity and abundance in wheat, Triticum aestivum L., and the significance of aphid species as vectors of barley yellow dwarf virus were studied over a nine-year period in the South Carolina coastal plain. Four aphid species colonized wheat in a consistent seasonal pattern. Greenbug, Schizaphis graminum (Rondani), and rice root aphid, Rhopalosiphum rufiabdominalis (Sasaki), colonized seedlingwheat immediately after crop emergence, with apterous colonies usually peaking in December or January and then declining for the remainder of the season. These two aphid species are unlikely to cause economic loss on wheat in South Carolina, thus crop managers should not have to sample for the subterranean R. rufiabdominalis colonies. Bird cherry-oat aphid, Rhopalosiphum padi (L.), was the second most abundant species and the most economically important. Rhopalosiphum padi colonies usually remained below 10/row-meter until peaking in February or March. Barley yellow dwarf incidence and wheat yield loss were significantly correlated with R. padi peak abundance and aphid-day accumulation on the crop. Based on transmission assays, R. padi was primarily responsible for vectoring the predominant virus serotype (PAV) we found in wheat. Pest management efforts should focus on sampling for and suppressing this aphid species. December planting reduced aphid-day accumulation and barley yellow dwarf incidence, but delayed planting is not a practical management option. English grain aphid, Sitobion avenae (F.), was the last species to colonize wheat each season, and the most abundant. Sitobion avenae was responsible for late-season virus transmission and caused direct yield loss by feeding on heads and flag leaves during an outbreak year.  相似文献   

6.
Vectoring ability of four aphid clones, Rp-M and Rp-R26 of Rhopalosiphum padi and Sa-R1 and Sa-V of Sitobion avenae, to transmit barley yellow dwarf (PAV, MAV and RPV) luteoviruses (BYDV) was compared in controlled conditions. Significant differences between highly efficient vectors (HEV), Rp-M and Sa-Rl, and poorly efficient vectors (PEV), Rp-R26 and Sa-V, were found in transmission of their specific viruses with acquisition and inoculation access periods (AAP, IAP) of 5 days. BYD-RPV was occasionally transmitted by both clones of S. avenae. None of 150 tested apterous adults of the Rp-R26 transmitted BYD-MAV, while 10% of transmission was observed from those of the Rp-M in a parallel test. An improved ELISA and immuno-PCR were adapted to test for viruses in aphids. The results obtained by the improved ELISA indicated there was a good correlation between virus detection in single aphids of HEV clones after a 5 day AAP and virus transmission by them. In contrast, the percentages of virus-carrying aphids of PEV clones were generally higher than those of their transmission rates. BYD-MAV and BYD-RPV were also detected by the improved ELISA in single aphids of their PEV clones, with the exception of BYD-RPV in those of Sa-V. However, after a 2-day IAP, the improved ELISA in most cases failed to detect these viruses in single aphids of PEV clones. Detection by immuno-PCR demonstrated that all three viruses could be acquired and retained by the aphids of both HEV and PEV clones. But, as visualised from electrophoretic bands, after the 2-day IAP the amplified products from aphid extracts of PEV clones were reduced. The detection in a batch of nine aphids by the improved ELISA revealed that virus content in PEV clones decreased more rapidly than that in HEV clones during transmission. Thus, the difference in transmission efficiency of the aphid clones within species was not caused by an inability to acquire virus, but was determined by variation in vectoring ability between them. This was due to differences in ability to prevent the passage of virions from haemocoel to salivary duct and/or different capacities for the retention of BYDV.  相似文献   

7.
During the years 1989–1992 cereal aphids were caught alive in a low level (1.5 m high) suction trap operated in Le Rheu (Brittany, France) and tested for BYDV transmission. In most cases comparisons with data collected simultaneously by a 12.2 m suction trap operating in the same site resulted in good relationships between weekly catches at both heights. Results from transmission tests showed that: (i) the two main BYDV vectors were Rhopalosiphum padi and Metopolophium dirhodum during the years of experiment; (ii) PAV and MAV were the commonest viruses and RPV was relatively scarce; (iii) during spring M. dirhodum appeared to be the most important MAV vector and nearly as good a PAV vector as R. padi; (iv) during autumn R. padi was the only vector of the three viruses with mixed transmission allowing it to transmit also MAV probably by heteroencapsidation. To give an indication of the risk of infection, infectivity indices were calculated by multiplying the numbers of aphids caught by the 12.2 m suction trap by the proportion that were infective. These infectivity indices agreed with field records of primary infections.  相似文献   

8.
Summary Barley yellow dwarf (BYDV) is a group a closely related viruses which cause economic losses in a wide range of graminaceous species throughout the world. Barley plants can be protected from the effects of BYDV by the Yd2 resistance gene. Plants which contain the Yd2 gene also contain a constitutively expressed polypeptide which was not found in any plants without Yd2. Conversely, BYDV susceptible plants contain another constitutively expressed polypeptide which was not found in any of the BYDV-resistant lines examined. These two polypeptides appear to have the same molecular weight (as assessed by SDS-PAGE) and only slightly different iso-electric points. They also appear to contain an extensive range of similar antigenic determinants. Both polypeptides were found in F1 hybrids made from resistant and susceptible plants. We suggest that these two polypeptides are the products of two allelic genes. Analysis of near-isogenic lines showed that the locus which controls the Yd2 resistance gene and the locus controlling the synthesis of the two polypeptides may be within ± 9 cM of each other. We have developed a Western blot technique which allows assessment of barley lines, 4-days after seed imbibition, for the presence of the Yd2 gene.  相似文献   

9.
Feeding behavior of Sitobion avenae F. (Homoptera: Aphididae) on oats (Avena sativa cv. Clintland 64) was electronically monitored, and waveforms corresponding to salivation, ingestion, and sieve element penetration described.During 90 min plant access, aphids ingested from phloem for 0–43 min (mean: 8.1 min) and non-phloem for 0–60 min (mean: 19 min). Only 65% of the aphids tested made phloem contact within 90 min, contacting phloem after 18–85 min (mean: 32 min). No significant difference was observed in the feeding behavior of aphids carrying barley yellow dwarf virus (BYDV) from that of non-viruliferous aphids.Penetration of a sieve element was a prerequisite for BYDV transmission but did not insure transmission. Penetration of one sieve element resulted in a 65% chance of transmission independent of the duration of phloem contact. The chance of transmission increased with increasing number of sieve element penetrations.Inoculation of oat seedlings with single, viruliferous aphids for 90 min is estimated to cause 54% of the plants to be infected. Also, it is estimated that no transmission can occur with plant access periods shorter than 17 min.
Zusammenfassung Das Probeverhalten von Sitobion avenae F. (Homoptera: Aphididae) auf Hafer (Sorte Clintland 64) wurden elektronisch verfolgt. Drei Wellenformen (S=Speichelfluss, X-das Eindringen in ein Siebelement, I=Nahrungsaufname) wurden registriert. In histologischen Untersuchungen wurden diese Wellenformen mit der Position der Stechborsten korreliert. Wenn X-Wellen oder eine X-I-Folge registriert wurden, war die Stechborste immer im Phloëm; bei S-Wellen oder bei einer S-I-Folge, war die Stechborste nie im Phloëm.Die Blattläuse wurden auf gesunden, fünf Tage alten Pflanzen während 90 Min beobachtet. 65% der Blattläuse erreichten nach 18–85 Min (Durchschnitt 32 Min) das Phloëm. Innerhalb 90 Min nahmen die Blattläuse während 0–43 Min (Durchschnitt 8.1 Min) Saft aus dem Phloem und während 0–60 Min (Durchschnitt 19 Min) Saft aus dem Mesophyll auf. Keine signifikanten Unterschiede im Probeverhalten wurden bei Blattläusen mit und ohne Barley Yellow Dwarf Virus (BYDV) festgestellt.Blattläuse, die innerhalb 24 Stunden BYDV übermitteln können, wurden für Übertragungsversuche verwendet. Das Probeverhalten dieser Blattläuser wurde manipuliert, und die Leistungsfähigkeit der Übertragung mit einer immunologischen Technik (ELISA) untersucht. Um BYDV zu übertragen mussten die Blattläuse mit einem Siebelement in Kontakt kommen. Nach der Stechborstenpenetration in ein Siebelement wurden 65% der Pflanzen mit BYDV infiziert. Der Prozentsatz infizierter Pflanzen und der Virusiter in den infizierten Pflanzen waren mit der Dauer der Siebelement-penetration (Anzahl von X-Wellen) nicht proportional. Wenn die Blattläuse mit zwei oder drei Siebelementen in Kontakt kamen, wurde der Prozentsatz infizierter Pflanzen signifikant erhöht, während der Virustiter nich verändert wurde. Infektionsprozente niedriger als 100% nach Siebelement-penetration sind möglicherweise das Resultat von Unterschieden in den Siebelementen.Es wird geschätzt dass 50% Infektion eintritt, wenn Pflanzen während ungefähr 83 Min von einer einzelnen infizierten Blattlaus besogen werden. Keine Übertragung von BYDV kann eintreten, wenn die Probezeit weniger als 17 Minuten beträgt.
  相似文献   

10.
Two approaches based on the concept of a vector population index are considered as possible deterministic elements for an empirical forecast of barley yellow dwarf virus (BYDV) in autumn sown cereals. The first, an aerial vector index, is a further elaboration of the infectivity index proposed by Plumb, Lennon & Gutteridge (1981), which assumes that virus damage is a function of the number of infective migrant alatae of the two main aphid vectors, Rhopalosiphum padi L. and Sitobion avenae F., integrated over time from crop planting or emergence. The new formulation, however, excludes holocyclic alate morphs (i.e. males and gynoparae) of the former species, which, although generally abundant in autumn, are nevertheless perceived as relatively unimportant virus vectors since they colonise only the alternative woody host, Prunus padus (the bird-cherry tree). The second approach, a crop vector index, is a more fundamental departure which argues that field populations of viruliferous aphids, both alatae and apterae, which have already colonised cereals, may be a better criterion of potential virus spread than the density of aerial migrant vectors. This index retains a similar integral form, but evaluates crop exposure to BYDV as accumulated infectious aphid-days. A method is described whereby this function can be derived from irregular or infrequent aphid samples in the crop. Both methods, unlike Plumb's (1976) original concept, produced indices which were significantly related to subsequent virus infection and yield loss in winter barley at Long Ashton (S.W. England, UK), 1978–1986. The best models were obtained with the crop vector index, fitted to observed virus infection by generalised linear regression using a complementary log-log link function, or to observed yield loss by simple linear regression using a log transformation of yield (r = 0.84 in each case; compared with r-values > 0.65 for the aerial vector index, and > 0.35 for Plumb's (1976) index). However, the residual errors and hence confidence limits of these fitted regressions were too large for predicting damage that was significantly less than a reasonable economic damage threshold for BYDV control. Analyses of the separate components of each index showed a good general relationship between aphid infectivity and the severity of crop infection, confirming the epidemiological importance of this factor. The functional expressions of aphid density, however, were not significant. This evident weakness in the models, and alternative approaches to BYDV forecasting are discussed.  相似文献   

11.
The effects of different acquisition access periods (AAPs) and inoculation access periods (IAPs) on the transmission efficiency of barley yellow dwarf luteovirus (BYDV) by Rhopalosiphum padi (L.) (Homoptera: Aphididae) after feeding on transgenic or nontransformed wheat, Triticum aestivum L., genotypes were studied. Three wheat genotypes were tested as virus sources: virus-susceptible 'Lambert' and 'Lambert'-derived transgenic lines 103.1J and 126.02, which express the BYDV-PAV coat protein gene. Lower virus titers were measured in BYDV-infected transgenic plants compared with Lambert. No significant differences in transmission efficiency were detected for R. padi after varying IAPs, regardless of genotype. Transmission efficiency increased with an increase in AAP in all genotypes tested. However, AAPs ranging from 6 to 48 h on Lambert resulted in significantly greater transmission efficiency than similar periods on transgenic 103.1J. Maximum transmission efficiency (70%) was observed after a 48-h AAP on Lambert, whereas the same AAP on 103.1J and 126.02 resulted in a significantly lower transmission efficiency (57%). Contrasts were used to compare the rates of transmission and the theoretical maximum transmission percentage among the different wheat genotypes serving as virus sources. Both parameters were significantly different among genotypes, indicating that viral acquisition from each genotype resulted in a unique pattern of virus transmission by R. padi. The lowest rate of virus transmission after an AAP was observed on 103.1J compared with 126.02 or Lambert. This is likely associated with a lower virus titer in 103.1J. This is the first report of transgenic virus resistance in wheat affecting the transmission efficiency of a virus vector.  相似文献   

12.
Yellow dwarf is a major disease problem of wheat, Triticum aestivum L., in Alabama and is estimated to cause yield loss of 21-42 bu/acre. The disease is caused by a complex of viruses comprising several virus species, including Barley yellow dwarf virus-PAV and Cereal yellow dwarf virus-RPV. Several other strains have not yet been classified into a specific species. The viruses are transmitted exclusively by aphids (Hemiptera:Aphididae). Between the 2005 and 2008 winter wheat seasons, aphids were surveyed in the beginning of each planting season in several wheat plots in Alabama and western Florida Collected aphids were identified and bioassayed for their yellow dwarf virus infectivity. This survey program was designed to identify the aphid species that serve as fall vectors of yellow dwarf virus into winter wheat plantings. From 2005 to 2008, bird cherry-oat aphid, Rhopalosiphum padi (L.); rice root aphid, Rhopalosiphum rufiabdominale (Sasaki); and greenbug, Schizaphis graminum (Rondani), were found consistently between October and December. The species of aphids and their timing of appearance in wheat plots were consistent with flight data collected in North Alabama between 1996 and 1999. Both R. padi and R. rufiabdominale were found to carry and transmit Barley yellow dwarf virus-PAV and Cereal yellow dwarf virus-RPV. The number of collected aphids and proportion of viruliferous aphids were low. Although this study has shown that both aphids are involved with introduction of yellow dwarf virus to winter wheat in Alabama and western Florida, no conclusions can be made as to which species may be the most important vector of yellow dwarf virus in the region.  相似文献   

13.
Winged individuals of Rhopalosiphum padi and Sitobion avenae transmitted the PAV-like and MAV-like isolates of barley yellow dwarf virus respectively. Success of transmission after inoculation access periods of 2, 6, 12, 24, 48 and 72 h were examined and survival, reproduction and movement of the aphid vectors were recorded at these times. The experiment was done at four different temperatures: 6oC, 12oC, 18oC and 23oC. For both isolates the inoculation efficacy did not increase after a 24 h inoculation access period and there was no difference in inoculation efficiency at the three highest temperatures, that at 6oC being significantly lower than at 12oC to 23oC. The results suggest that autumn temperature is a critical factor for BYDV epidemiology in Britain with a small increase in autumn temperature leading to greatly increased infection rates.  相似文献   

14.
1 The effect of drought stress and temperature on the dispersal of wingless aphids Rhopalosiphum padi (L.) and the pattern of spread of BYDV (barley yellow dwarf virus) within wheat plants in controlled environment chambers was quantified. Combinations of three different drought stress levels, unstressed, moderate and high stress level, and three different temperatures, 5 ± 1 °C, 10 ± 1 °C, and 15 ± 1 °C, were investigated. 2 With increased temperature there was an increase in the mean distance of visited plants from the point of release and in the number of plants visited and infected with BYDV. Drought stress had no effect on mean distance moved by aphids at any temperature or on plants infected with virus at 10 °C and 5 °C. When plants were drought stressed, the numbers of plants visited and infected were greater at 15 °C than at 10 °C and 5 °C. 3 A greater proportion of plants visited by aphids was infected with BYDV when plants were stressed than when not stressed. At 15 °C a greater proportion of these plants was infected than at lower temperatures. There was no difference between treatments in the numbers of aphids present at the end of the experiment. 4 It is concluded that drought stress and temperature are of considerable importance in virus spread.  相似文献   

15.
The incidence and distribution of the three principal isolates of barley yellow dwarf virus (PAV, RPV and MAV) are described in winter cereal crops, cereal (stubble) regrowth and grasses from 11 sites in western France and south-west England during 1987 and 1988. Isolates were identified by indirect ‘sandwich’ ELISA using the monoclonal antibodies MAC91, MAC92 and MAFF2. More virus infection occurred in all localities and in most of the plant communities sampled, with the exception of perennial grass leys, in 1987 than in 1988. All three isolates were widespread. MAV was associated more with sites further north and PAV more with those further south. The geographical distribution of RPV was less variable. Underlying these trends, the relative abundance of isolates differed considerably between habitats. RPV always predominated in perennial grass leys and MAV in most cereal crops, although in the latter MAV was less prevalent in 1987 than in 1988. The greatest regional difference was found in stubble regrowth where PAV predominated in France but MAV predominated in England. Grasses from field margins (only sampled in England) were mainly infected by MAV and RPV. The implications of these findings for the epidemiology of BYDV are discussed, especially the roles of different host plant communities or habitats in the annual infection cycle of small-grain cereals.  相似文献   

16.
Data from bioassays of field collected aphids, barley indicator plants exposed to natural conditions, and various types of aphid traps were used to describe the spread of barley yellow dwarf virus (BYDV) in wheat and barley near Prosser, Washington. Bioassays were also used to assess the relative importance of local vector species. Of alate aphids collected from grain in the 1982 and 1983 fall migration seasons, 3.4–14–5% transmitted BYDV. Data from concurrent and post-migration assays of resident aphids (apterae and nymphs) reflected an increase in the proportion of infected plants in the field. Maximum increase in the percentage of viruliferous aphids occurred in late November and December of 1982 and November of 1983. The 1982 increase occurred after aphid flights had ceased for the year, suggesting active secondary spread. Collections in pitfall traps and infected trap plants from November to February confirmed aphid activity and virus spread. Rhopalosiphum padi was the most important vector in central Washington in 1982 and 1983 because of its abundance and relative BYDV transmission efficiency. Metopolophium dirhodum was more winter-hardy than R. padi and equal to R. padi in its efficiency as a vector; however, it was not as abundant as R. padi except during the mild winter of 1982–83, when it was a major contributor to secondary spread. Sitobion avenae may be important in years when it is abundant, but it was only a quarter as efficient as R. padi. Rhopalosiphum maidis was a much less efficient vector than R. padi and it only reached high populations in late autumn barley.  相似文献   

17.
Suction traps at Leeds University Farm, N. Yorkshire, monitored aerial populations of cereal aphids over three autumns. Different migration patterns were observed between the four main species, Sitobion avenae, Metopolophium dirhodum, Rhopalosiphum padi and R. insertum. The relevance of these patterns to the epidemiology of barley yellow dwarf virus (BYDV) is discussed. Transmission tests revealed S. avenae to be the major vector of BYDV, rather than R. padi, which is responsible for disease outbreaks in the south and west of Britain. An Infectivity Index (II) of 50 has been advocated for R. padi-transmitted BYDV, above which economic damage is likely to occur. This value is shown not to be applicable to the Vale of York, and methods of adapting the data are proposed. Such adjusted II values depend on the behaviour and reproduction of the aphids during the transmission tests, and produce II values that correlate well with levels of field infection in the area.  相似文献   

18.
The hydroxamic acids in the seedlings of four varieties of winter wheat were extracted initially in boiling methanol in order to avoid enzymatic hydrolysis. The increase in numbers of aphids on these varieties of wheat were recorded. HPLC analysis of hydroxamic acids in the extracts showed the presence of DIMBOA-glucoside, DIMBOA-aglucone and its benzoxazolinone (MBOA). There was a highly significant negative correlation between the concentration of DIMBOA-aglucone in the seedlings and aphid performance. However, the association between aphid performance and DIMBOA-aglucone in the tips of the seedlings was weaker. In general aphid infestation of wheat seedlings slightly increased the concentration of all the hydroxamic acid derivatives. Moreover, aphids ingested hydroxamic acids and were able to detoxify some of the DIMBOA-aglucone they ingested.  相似文献   

19.
Abstract. 1. An investigation was conducted to determine the effects of variation among individual plants of Rudbeckia laciniata L. on the distribution and abundance of the aphid Uroleucon rudbeckiae (Fitch).
2. Wild plants were examined repeatedly for up to 21/2 years to obtain information about plant growth and flowering, and about aphid densities on individual plants.
3. Aphid densities on individual plants were positively associated with several measures of plant vigour, including height, growth since previous year, and occurrence of flowers.
4. The colonization of plants by alate aphids was more highly correlated with plant height than with plant exposure. Aphid densities on individual plants were more strongly associated with plant height than with number of colonists.
5. In all years there were many hosts which were never colonized by aphids. Some of these plants produced shoots but did not flower. Experimental infestation of these plants showed that they were unsuitable for aphid growth and reproduction. Some plants which did flower and which escaped aphid infestation were nevertheless suitable hosts. Previously unsuitable host individuals were able to support aphids when grown under glass-house conditions.  相似文献   

20.
Barley yellow dwarf virus (BYDV) causes significant losses in yield and in overwintering ability of winter cereals. Mechanisms by which the physiology of plants is affected by the virus are not clear. To see how carbohydrates in the crown of winter cereals were affected by BYDV, fructan isomers of degree of polymerization (DP) 3–5, fructan DP>6 and the simple sugars, glucose, fructose and sucrose, were measured before and during cold hardening in three oat ( Avena sativa L.) cultivars, 'Wintok', 'Coast Black' and 'Fulghum'. On a fresh weight basis fructan DP>6 decreased by 50% in infected 'Wintok' and 'Coast Black' and by 25% in 'Fulghum'. Two DP3, one DP4 and one DP5 isomer were significantly higher than non-infected controls. The percentages of simple sugars in infected crowns were significantly higher than controls in all three cultivars in every week except the first week of hardening. Crude enzyme extracts from BYDV infected plants incubated with sucrose suggested higher invertase and lower sucrose-sucrosyl transferase activity. When incubated with 1-kestose and neokestin, no significant difference was found in fructose fructosyl transferase or in hydrolase activity. The activity of unidentified enzymes catalysing the synthesis of larger (DP>5) fructan was altered by BYDV. The decrease of carbohydrates in the crown induced indirectly by BYDV may alter the plant's capacity to regenerate tillers in the spring. The ability of plants to prevent or tolerate carbohydrate fluctuations induced by BYDV infection may be an important genetically regulated characteristic for developing virus-resistant cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号