首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Escherichia coli disulfide bond isomerase DsbC rearranges incorrect disulfide bonds during oxidative protein folding. It is specifically activated by the periplasmic N-terminal domain (DsbDalpha) of the transmembrane electron transporter DsbD. An intermediate of the electron transport reaction was trapped, yielding a covalent DsbC-DsbDalpha complex. The 2.3 A crystal structure of the complex shows for the first time the specific interactions between two thiol oxidoreductases. DsbDalpha is a novel thiol oxidoreductase with the active site cysteines embedded in an immunoglobulin fold. It binds into the central cleft of the V-shaped DsbC dimer, which assumes a closed conformation on complex formation. Comparison of the complex with oxidized DsbDalpha reveals major conformational changes in a cap structure that regulates the accessibility of the DsbDalpha active site. Our results explain how DsbC is selectively activated by DsbD using electrons derived from the cytoplasm.  相似文献   

2.
Escherichia coli DsbD transports electrons across the plasma membrane, a pathway that leads to the reduction of protein disulfide bonds. Three secreted thioredoxin-like factors, DsbC, DsbE, and DsbG, reduce protein disulfide bonds whereby an active site C-X-X-C motif is oxidized to generate a disulfide bond. DsbD catalyzes the reduction of the disulfide of DsbC, DsbE, and DsbG but not of the thioredoxin-like oxidant DsbA. The reduction of DsbC, DsbE, and DsbG occurs by transport of electrons from cytoplasmic thioredoxin to the C-terminal thioredoxin-like domain of DsbD (DsbD(C)). The N-terminal domain of DsbD, DsbD(N), acts as a versatile adaptor in electron transport and is capable of forming disulfides with oxidized DsbC, DsbE, or DsbG as well as with reduced DsbD(C). Isolated DsbD(N) is functional in electron transport in vitro. Crystallized DsbD(N) assumes an immunoglobulin-like fold that encompasses two active site cysteines, C103 and C109, forming a disulfide bond between beta-strands. The disulfide of DsbD(N) is shielded from the environment and capped by a phenylalanine (F70). A model is discussed whereby the immunoglobulin fold of DsbD(N) may provide for the discriminating interaction with thioredoxin-like factors, thereby triggering movement of the phenylalanine cap followed by disulfide rearrangement.  相似文献   

3.
Dsb proteins catalyze folding and oxidation of polypeptides in the periplasm of Escherichia coli. DsbC reduces wrongly paired disulfides by transferring electrons from its catalytic dithiol motif (98)CGYC. Genetic evidence suggests that recycling of this motif requires at least three proteins, the cytoplasmic thioredoxin reductase (TrxB) and thioredoxin (TrxA) as well as the DsbD membrane protein. We demonstrate here that electrons are transferred directly from thioredoxin to DsbD and from DsbD to DsbC. Three cysteine pairs within DsbD undergo reversible disulfide rearrangements. Our results suggest a novel mechanism for electron transport across membranes whereby electrons are transferred sequentially from cysteine pairs arranged in a thioredoxin-like motif (CXXC) to a cognate reactive disulfide.  相似文献   

4.
E J Stewart  F Katzen    J Beckwith 《The EMBO journal》1999,18(21):5963-5971
The active-site cysteines of the Escherichia coli periplasmic protein disulfide bond isomerase (DsbC) are kept reduced by the cytoplasmic membrane protein, DsbD. DsbD, in turn, is reduced by cytoplasmic thioredoxin, indicating that DsbD transfers disulfidereducing potential from the cytoplasm to the periplasm. To understand the mechanism of this unusual mode of electron transfer, we have undertaken a genetic analysis of DsbD. In the process, we discovered that the previously suggested start site for the DsbD protein is incorrect. Our results permit the formulation of a model of DsbD membrane topology. Also, we show that six cysteines of DsbD conserved among DsbD homologs are essential for the reduction of DsbC, DsbG and for a reductive pathway leading to c-type cytochrome assembly in the periplasm. Our findings suggest a testable model for the DsbD-dependent transfer of electrons across the membrane, involving a cascade of disulfide bond reduction steps.  相似文献   

5.
Isomerization of disulfide bonds is vital for the proper folding of proteins that possess multiple disulfides. In prokaryotes, the catalytic pathway responsible for disulfide isomerization involves thioredoxin, thioredoxin reductase, and the DsbC, DsbG, and DsbD proteins. To be active as isomerases, DsbC and DsbG must be kept reduced. This task is performed by the cytoplasmic membrane protein DsbD. DsbD in turn is reduced by the cytoplasmic thioredoxin and is composed of three domains. The beta domain is membrane-embedded, whereas the alpha and gamma domains are localized to the periplasm. It had been proposed that electrons are transferred within DsbD by a succession of disulfide exchange reactions between the three domains. To test this model using biochemical methods, we purified to homogeneity different polypeptides corresponding to the alpha, beta, gamma, and betagamma domains. Using these domains, we could reconstitute a DsbD activity and, for the first time, reconstitute in vitro the electron transport pathway from NADPH and thioredoxin to DsbC and DsbG. We showed that electrons are transferred from thioredoxin to the beta domain then successively to the gamma domain, the alpha domain, and finally on to DsbC or DsbG. We also determined the redox potential of the gamma domain to be -241 mV, and that of the alpha domain was found to be -229 mV. This shows that the direction of electron flow within DsbD is thermodynamically driven.  相似文献   

6.
DsbD from Escherichia coli catalyzes the transport of electrons from cytoplasmic thioredoxin to the periplasmic disulfide isomerase DsbC. DsbD contains two periplasmically oriented domains at the N- and C-terminus (nDsbD and cDsbD) that are connected by a central transmembrane (TM) domain. Each domain contains a pair of cysteines that are essential for catalysis. Here, we show that Cys109 and Cys461 form a transient interdomain disulfide bond between nDsbD and cDsbD in the reaction cycle of DsbD. We solved the crystal structure of this catalytic intermediate at 2.85 A resolution, which revealed large relative domain movements in DsbD as a consequence of a strong overlap between the surface areas of nDsbD that interact with DsbC and cDsbD. In addition, we have measured the kinetics of all functional and nonfunctional disulfide exchange reactions between redox-active, periplasmic proteins and protein domains from the oxidative DsbA/B and the reductive DsbC/D pathway. We show that both pathways are separated by large kinetic barriers for nonfunctional disulfide exchange between components from different pathways.  相似文献   

7.
The Escherichia coli periplasmic protein DsbC is active both in vivo and in vitro as a protein disulfide isomerase. For DsbC to attack incorrectly formed disulfide bonds in substrate proteins, its two active-site cysteines should be in the reduced form. Here we present evidence that, in wild-type cells, these two cysteines are reduced. Further, we show that a pathway involving the cytoplasmic proteins thioredoxin reductase and thioredoxin and the cytoplasmic membrane protein DsbD is responsible for the reduction of these cysteines. Thus, reducing potential is passed from cytoplasmic electron donors through the cytoplasmic membrane to DsbC. This pathway does not appear to utilize the cytoplasmic glutathione-glutaredoxin pathway. The redox state of the active-site cysteines of DsbC correlates quite closely with its ability to assist in the folding of proteins with multiple disulfide bonds. Analysis of the activity of mutant forms of DsbC in which either or both of these cysteines have been altered further supports the role of DsbC as a disulfide bond isomerase.  相似文献   

8.
DsbD from Escherichia coli transports two electrons from cytoplasmic thioredoxin to the periplasmic substrate proteins DsbC, DsbG and CcmG. DsbD consists of an N-terminal periplasmic domain (nDsbD), a C-terminal periplasmic domain, and a central transmembrane domain. Each domain possesses two cysteines required for electron transport. Herein, we demonstrate fast (3.9 x 10(5) M(-1)s(-1)) and direct disulfide exchange between nDsbD and CcmG, a highly specific disulfide reductase essential for cytochrome c maturation. We determined the crystal structure of the disulfide-linked complex between nDsbD and the soluble part of CcmG at 1.94 A resolution. In contrast to the other two known complexes of nDsbD with target proteins, the N-terminal segment of nDsbD contributes to specific recognition of CcmG. This and other features, like the possibility of using an additional interaction surface, constitute the structural basis for the adaptability of nDsbD to different protein substrates.  相似文献   

9.
The cytoplasmic membrane protein DsbD keeps the periplasmic disulfide isomerase DsbC reduced, using the cytoplasmic reducing power of thioredoxin. DsbD contains three domains, each containing two reactive cysteines. One membrane-embedded domain, DsbDbeta, transfers electrons from thioredoxin to the carboxy-terminal thioredoxin-like periplasmic domain DsbDgamma. To evaluate the role of conserved amino acid residues in DsbDbeta in the electron transfer process, we substituted alanines for each of 19 conserved amino acid residues and assessed the in vivo redox states of DsbC and DsbD. The mutant DsbDs of 11 mutants which caused defects in DsbC reduction showed relatively oxidized redox states. To analyze the redox state of each DsbD domain, we constructed a thrombin-cleavable DsbD (DsbDTH) from which we could generate all three domains as separate polypeptide chains by thrombin treatment in vitro. We divided the mutants with strong defects into two classes. The first mutant class consists of mutant DsbDbeta proteins that cannot receive electrons from cytoplasmic thioredoxin, resulting in a DsbD that has all six of its cysteines disulfide bonded. The second mutant class represents proteins in which the transfer of electrons from DsbDbeta to DsbDgamma appears to be blocked. This class includes the mutant with the most clear-cut defect, P284A. We relate the properties of the mutants to the positions of the amino acids in the structure of DsbD and discuss mechanisms that would interfere with the electron transfer process.  相似文献   

10.
DsbD from Escherichia coli catalyzes the transport of electrons from cytoplasmic thioredoxin to the periplasmic substrate proteins DsbC, DsbG and CcmG. DsbD consists of a periplasmic, N-terminal domain (nDsbD), a central transmembrane domain and a periplasmic, C-terminal domain (cDsbD). Each of these domains contains two essential cysteine residues that are required for intermolecular disulfide exchange between DsbD and substrates, and intramolecular disulfide exchange between the three DsbD domains. In order to determine the rate of intramolecular electron transfer from cDsbD to nDsbD, we constructed a redox-sensitive tryptophan variant of cDsbD (cDsbD(W)) that shows an approximately threefold increase in fluorescence upon reduction and has the same redox potential and reactivity as wild-type cDsbD. cDsbD(W) was then used for the construction of fusion proteins with nDsbD and cDsbD(W), connected via flexible linkers of different length. Using the DsbD substrate DsbC, which can only be reduced by nDsbD and does not react with cDsbD, we could directly measure the intramolecular electron transfer from cDsnD(W) to nDsbB in the fusion proteins. We show that the intramolecular disulfide exchange is significantly faster than the reaction between isolated nDsbD and cDsbD. Nevertheless, the effective concentration of 0.2 mM of the domains in the fusions is comaparably low. The rate of 23 s(-1) for the intramolecular disulfide exchange in the fusions was independent of the linker length and may represent the upper limit for the substrate turnover of full-length DsbD.  相似文献   

11.
The DsbD protein is essential for electron transfer from the cytoplasm to the periplasm of Gram-negative bacteria. Its N-terminal domain dispatches electrons coming from cytoplasmic thioredoxin (Trx), via its central transmembrane and C-terminal domains, to its periplasmic partners: DsbC, DsbE/CcmG, and DsbG. Previous structural studies described the latter proteins as Trx-like folds possessing a characteristic C-X-X-C motif able to generate a disulfide bond upon oxidation. The Escherichia coli nDsbD displays an immunoglobulin-like fold in which two cysteine residues (Cys103 and Cys109) allow a disulfide bond exchange with its biological partners.We have determined the structure in solution and the backbone dynamics of the C103S mutant of the N-terminal domain of DsbD from Neisseria meningitidis. Our results highlight significant structural changes concerning the beta-sheets and the local topology of the active site compared with the oxidized form of the E. coli nDsbD. The structure reveals a "cap loop" covering the active site, similar to the oxidized E. coli nDsbD X-ray structure. However, regions featuring enhanced mobility were observed both near to and distant from the active site, revealing a capacity of structural adjustments in the active site and in putative interaction areas with nDsbD biological partners. Results are discussed in terms of functional consequences.  相似文献   

12.
D Missiakas  F Schwager    S Raina 《The EMBO journal》1995,14(14):3415-3424
Previous studies have established that DsbA and DsbC, periplasmic proteins of Escherichia coli, are two key players involved in disulfide bond formation. A search for extragenic mutations able to compensate for the lack of dsbA function in vivo led us to the identification of a new gene, designated dsbD. Lack of DsbD protein leads to some, but not all, of the phenotypic defects observed with other dsb mutations, such as hypersensitivity to dithiothreitol and to benzylpenicillin. In addition, unlike the rest of the dsb genes, dsbD is essential for bacterial growth at temperatures above 42 degrees C. Cloning of the wild-type gene and sequencing and overexpression of the protein show that dsbD is part of an operon and encodes an inner membrane protein. A 138 amino acid subdomain of the protein was purified and shown to possess an oxido-reductase activity in vitro. Expressing this subdomain in the periplasmic space helped restore the phenotypic defects associated with a dsbD null mutation. Interestingly, this domain shares 45% identity with the portion of the eukaryotic protein disulfide isomerase carrying the active site. We further show that in dsbD mutant bacteria the dithiol active sites of DsbA and DsbC proteins are mostly oxidized, as compared with wild-type bacteria. Our results argue that DsbD generates a reducing source in the periplasm, which is required for maintaining proper redox conditions. The finding that overexpression of DsbD leads to a Dsb- phenotype, very similar to that exhibited by dsbA null mutants, is in good agreement with such a model.  相似文献   

13.
In the bacterial periplasm the co-existence of a catalyst of disulfide bond formation (DsbA) that is maintained in an oxidized state and of a reduced enzyme that catalyzes the rearrangement of mispaired cysteine residues (DsbC) is important for the folding of proteins containing multiple disulfide bonds. The kinetic partitioning of the DsbA/DsbB and DsbC/DsbD pathways partly depends on the ability of DsbB to oxidize DsbA at rates >1000 times greater than DsbC. We show that the resistance of DsbC to oxidation by DsbB is abolished by deletions of one or more amino acids within the alpha-helix that connects the N-terminal dimerization domain with the C-terminal thioredoxin domain. As a result, mutant DsbC carrying alpha-helix deletions could catalyze disulfide bond formation and complemented the phenotypes of dsbA cells. Examination of DsbC homologues from Haemophilus influenzae, Pseudomonas aeruginosa, Erwinia chrysanthemi, Yersinia pseudotuberculosis, Vibrio cholerae (30-70% sequence identity with the Escherichia coli enzyme) revealed that the mechanism responsible for avoiding oxidation by DsbB is a general property of DsbC family enzymes. In addition we found that deletions in the linker region reduced, but did not abolish, the ability of DsbC to assist the formation of active vtPA and phytase in vivo, in a DsbD-dependent manner, revealing that interactions between DsbD and DsbC are also conserved.  相似文献   

14.
大肠杆菌分泌蛋白二硫键的形成是一系列蛋白协同作用的结果,主要是Dsb家族蛋白,迄今为止共发现了DsbA、DsbB、DsbC、DsbD、DsbE和DsbG。在体内,DsbA负责氧化两个巯基形成二硫键,DsbB则负责DsbA的再氧化。DsbC和DsbG负责校正DsbA导入的异常二硫键,DsbD则负责对DsbC和DsbG进行再还原,DsbE的功能与DsbD类似。除了直接和二硫键的形成相关外,DsbA、DsbC和DsbG都有分子伴侣功能。它们的分子伴侣功能独立于二硫键形成酶的活性并且对二硫键形成酶活性具有明显的促进作用。基于Dsb蛋白的功能特性,利用它们以大肠杆菌为宿主表达外源蛋白,特别是含有二硫键的蛋白,取得了很多成功的例子。本文简要介绍了这方面的进展,显示Dsb蛋白在促进外源蛋白在大肠杆菌中以可溶形式表达方面具有广阔的应用前景。  相似文献   

15.
Disulfide bond formation is a catalyzed process in vivo. In prokaryotes, the oxidation of cysteine pairs is achieved by the transfer of disulfides from the highly oxidizing DsbA/DsbB catalytic machinery to substrate proteins. The oxidizing power utilized by this system comes from the membrane-embedded electron transport system, which utilizes molecular oxygen as a final oxidant. Proofreading of disulfide bond formation is performed by the DsbC/DsbD system, which has the ability to rearrange non-native disulfides to their native configuration. These disulfide isomerization reactions are sustained by a constant supply of reducing power provided by the cytoplasmic thioredoxin system, utilizing NADPH as the ultimate electron source.  相似文献   

16.
DsbD from Escherichia coli transports electrons from cytoplasmic thioredoxin across the inner membrane to the periplasmic substrate proteins DsbC, DsbG and CcmG. DsbD consists of three domains: a periplasmic N-terminal domain, a central transmembrane domain (tmDsbD) and a periplasmic C-terminal domain. Each domain contains two essential cysteine residues that are required for electron transport. In contrast to the quinone reductase DsbB, HPLC analysis of the methanol/hexane extracts of purified DsbD revealed no presence of quinones, suggesting that the tmDsbD interacts with thioredoxin and the periplasmic C-terminal domain exclusively via disulfide exchange. We also demonstrate that a DsbD variant containing only the redox-active cysteine pair C163 and C285 in tmDsbD, reconstituted into liposomes, has a redox potential of − 0.246 V. The results show that all steps in the DsbD-mediated electron flow are thermodynamically favorable.  相似文献   

17.
When brain-derived neurotrophic factor (BDNF) is produced in the Escherichia coli periplasm, insoluble BDNF proteins with low biological activity and having mismatched disulfide linkages are formed. The coexpression of cysteine oxidoreductases (DsbA and DsbC) and membrane-bound enzymes (DsbB and DsbD), which play an important role in the formation of disulfide bonds in the periplasm, was investigated to improve the production of soluble and biologically active BDNF. The expression levels of Dsb proteins changed when the growth medium and the Dsb expression plasmids were changed, and the production rate of soluble BDNF was almost proportional to the expression level of DsbC protein with disulfide isomerase activity in the case of a low expression level of BDNF. The rate of soluble BDNF production with coexpression of DsbABCD was as high as 35%. These results show that coexpression of BDNF and Dsb proteins can effectively increase the production of soluble and biologically active BDNF.  相似文献   

18.
We have characterized in vivo and in vitro the recently identified DsbG from Escherichia coli. In addition to sharing sequence homology with the thiol disulfide exchange protein DsbC, DsbG likewise was shown to form a stable periplasmic dimer, and it displays an equilibrium constant with glutathione comparable with DsbA and DsbC. DsbG was found to be expressed at approximately 25% the level of DsbC. In contrast to earlier results (Andersen, C. L., Matthey-Dupraz, A., Missiakas, D., and Raina, S. (1997) Mol. Microbiol. 26, 121-132), we showed that dsbG is not essential for growth and that dsbG null mutants display no defect in folding of multiple disulfide-containing heterologous proteins. Overexpression of DsbG, however, was able to restore the ability of dsbC mutants to express heterologous multidisulfide proteins, namely bovine pancreatic trypsin inhibitor, a protein with three disulfides, and to a lesser extent, mouse urokinase (12 disulfides). As in DsbC, the putative active site thiols in DsbG are completely reduced in vivo in a dsbD-dependent fashion, as would be expected if DsbG is acting as a disulfide isomerase or reductase. However, the latter is not likely because DsbG could not catalyze insulin reduction in vitro. Overall, our results indicate that DsbG functions primarily as a periplasmic disulfide isomerase with a narrower substrate specificity than DsbC.  相似文献   

19.
The assembly of the β-barrel proteins present in the outer membrane (OM) of Gram-negative bacteria is poorly characterized. After translocation across the inner membrane, unfolded β-barrel proteins are escorted across the periplasm by chaperones that reside within this compartment. Two partially redundant chaperones, SurA and Skp, are considered to transport the bulk mass of β-barrel proteins. We found that the periplasmic disulfide isomerase DsbC cooperates with SurA and the thiol oxidase DsbA in the folding of the essential β-barrel protein LptD. LptD inserts lipopolysaccharides in the OM. It is also the only β-barrel protein with more than two cysteine residues. We found that surAdsbC mutants, but not skpdsbC mutants, exhibit a synthetic phenotype. They have a decreased OM integrity, which is due to the lack of the isomerase activity of DsbC. We also isolated DsbC in a mixed disulfide complex with LptD. As such, LptD is identified as the first substrate of DsbC that is localized in the OM. Thus, electrons flowing from the cytoplasmic thioredoxin system maintain the integrity of the OM by assisting the folding of one of the most important β-barrel proteins.  相似文献   

20.
Dsb proteins (DsbA, DsbB, DsbC, and DsbD) catalyze formation and isomerization of protein disulfide bonds in the periplasm of Escherichia coli. By using a set of Dsb coexpression plasmids constructed recently, we analyzed the effects of Dsb overexpression on production of horseradish peroxidase (HRP) isozyme C that contains complex disulfide bonds and tends to aggregate when produced in E. coli. When transported to the periplasm, HRP was unstable but was markedly stabilized upon simultaneous overexpression of the set of Dsb proteins (DsbABCD). Whereas total HRP production increased severalfold upon overexpression of at least disulfide-bonded isomerase DsbC, maximum transport of HRP to the periplasm seemed to require overexpression of all DsbABCD proteins, suggesting that excess Dsb proteins exert synergistic effects in assisting folding and transport of HRP. Periplasmic production of HRP also increased when calcium, thought to play an essential role in folding of nascent HRP polypeptide, was added to the medium with or without Dsb overexpression. These results suggest that Dsb proteins and calcium play distinct roles in periplasmic production of HRP, presumably through facilitating correct folding. The present Dsb expression plasmids should be useful in assessing and dissecting periplasmic production of proteins that contain multiple disulfide bonds in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号