首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
In order to understand in which biological processes the four-stranded G-quadruplex (G4) DNA structures play a role, it is important to determine which predicted regions can actually adopt a G4 structure. Here, to identify DNA regions in Schizosaccharomyces pombe that fold into G4 structures, we first optimized a quantitative PCR (qPCR) assay using the G4 stabilizer, PhenDC3. We call this method the qPCR stop assay, and used it to screen for G4 structures in genomic DNA. The presence of G4 stabilizers inhibited DNA amplification in 14/15 unexplored genomic regions in S. pombe that encompassed predicted G4 structures, suggesting that at these sites the stabilized G4 structure formed an obstacle for the DNA polymerase. Furthermore, the formation of G4 structures was confirmed by complementary in vitro assays. In vivo, the S. pombe G4 unwinder Pif1 helicase, Pfh1, was associated with tested G4 sites, suggesting that the G4 structures also formed in vivo. Thus, we propose that the confirmed G4 structures in S. pombe form an obstacle for replication in vivo, and that the qPCR stop assay is a method that can be used to identify G4 structures. Finally, we suggest that the qPCR stop assay can also be used for identifying G4 structures in other organisms, as well as being adapted to screen for novel G4 stabilizers.  相似文献   

5.
6.
G-quadruplex DNA is a four-stranded DNA structure formed by non-Watson-Crick base pairing between stacked sets of four guanines. Many possible functions have been proposed for this structure, but its in vivo role in the cell is still largely unresolved. We carried out a genome-wide survey of the evolutionary conservation of regions with the potential to form G-quadruplex DNA structures (G4 DNA motifs) across seven yeast species. We found that G4 DNA motifs were significantly more conserved than expected by chance, and the nucleotide-level conservation patterns suggested that the motif conservation was the result of the formation of G4 DNA structures. We characterized the association of conserved and non-conserved G4 DNA motifs in Saccharomyces cerevisiae with more than 40 known genome features and gene classes. Our comprehensive, integrated evolutionary and functional analysis confirmed the previously observed associations of G4 DNA motifs with promoter regions and the rDNA, and it identified several previously unrecognized associations of G4 DNA motifs with genomic features, such as mitotic and meiotic double-strand break sites (DSBs). Conserved G4 DNA motifs maintained strong associations with promoters and the rDNA, but not with DSBs. We also performed the first analysis of G4 DNA motifs in the mitochondria, and surprisingly found a tenfold higher concentration of the motifs in the AT-rich yeast mitochondrial DNA than in nuclear DNA. The evolutionary conservation of the G4 DNA motif and its association with specific genome features supports the hypothesis that G4 DNA has in vivo functions that are under evolutionary constraint.  相似文献   

7.
8.
Specific interactions of distamycin with G-quadruplex DNA   总被引:2,自引:1,他引:1       下载免费PDF全文
Distamycin binds the minor groove of duplex DNA at AT-rich regions and has been a valuable probe of protein interactions with double-stranded DNA. We find that distamycin can also inhibit protein interactions with G-quadruplex (G4) DNA, a stable four-stranded structure in which the repeating unit is a G-quartet. Using NMR, we show that distamycin binds specifically to G4 DNA, stacking on the terminal G-quartets and contacting the flanking bases. These results demonstrate the utility of distamycin as a probe of G4 DNA–protein interactions and show that there are (at least) two distinct modes of protein–G4 DNA recognition which can be distinguished by sensitivity to distamycin.  相似文献   

9.
10.
11.
To facilitate identification of additional DNA markers near and on opposite sides of the Huntington disease (HD) gene, we developed a panel of somatic-cell hybrids that allows accurate subregional mapping of DNA fragments in the distal portion of 4p. By means of the hybrid-cell mapping panel and a library of DNA fragments enriched for sequences from the terminal one-third of the short arm of chromosome 4, 105 DNA fragments were mapped to six different physical regions within 4p15-4pter. Four polymorphic DNA fragments of particular interest were identified, at least three of which are distal to the HD-linked D4S10 (G8) locus, a region of 4p previously devoid of DNA markers. Since the HD gene has also recently been shown to be distal to G8, these newly identified DNA markers are in the direction of the HD gene from G8, and one or more of them may be on the opposite side of HD from G8.  相似文献   

12.
13.
14.
G-quadruplex (G4) DNA structures have emerged as important regulatory elements during DNA metabolic transactions. While many in vitro studies have focused on the kinetics of G4 formation within DNA single-strands, G4 are found in vivo in double-stranded DNA regions, where their formation is challenged by the complementary strand. Since the energy of hybridization of Watson-Crick structures dominates the energy of G4 folding, this competition should play a critical role on G4 persistence. To address this, we designed a single-molecule assay allowing to measure G4 folding and persistence times in the presence of the complementary strand. We quantified both folding and unfolding rates of biologically relevant G4 sequences, such as the cMYC and cKIT oncogene promoters, human telomeres and an avian replication origin. We confirmed that G4s are found much more stable in tested replication origin and promoters than in human telomere repeats. In addition, we characterized how G4 dynamics was affected by G4 ligands and showed that both folding rate and persistence time increased. Our assay opens new perspectives for the measurement of G4 dynamics in double-stranded DNA mimicking a replication fork, which is important to understand their role in DNA replication and gene regulation at a mechanistic level.  相似文献   

15.
G4-DNA is a highly stable alternative DNA structure that can form spontaneously in guanine-rich regions of single-stranded DNA under physiological conditions. Since a number of biological processes create such single-stranded regions, G4-DNA occurrence must be regulated. To date, resolution of tetramolecular G4-DNA into single strands (G4-resolvase activity) has been observed only in recombinant RecQ DNA helicases. We previously reported that human cell lysates possess tetramolecular G4-DNA resolving activity (Harrington, C., Lan, Y., and Akman, S. (1997) J. Biol Chem. 272, 24631-24636). Here we report the first complete purification of a major non-RecQ, NTP-dependent G4-DNA resolving enzyme from human cell lysates. This enzyme is identified as the DEXH helicase product of gene DHX36 (also known as RHAU). G4-DNA resolving activity was captured from HeLa cell lysates on G4-DNA affinity beads and further purified by gel filtration chromatography. The DHX36 gene product was identified by mass spectrometric sequencing of a tryptic digest from the protein band on SDS-PAGE associated with activity. DHX36 was cloned within a His(6)-tagging vector, expressed, and purified from Escherichia coli. Inhibition and substrate resolution assays showed that recombinant DHX36 protein displayed robust, highly specific G4-DNA resolving activity. Immunodepletion of HeLa lysates by a monoclonal antibody to the DHX36 product removed ca. 77% of the enzyme from lysates and reduced G4-DNA resolving activity to 46.0 +/- 0.4% of control, demonstrating that DHX36 protein is responsible for the majority of tetramolecular G4-DNA resolvase activity.  相似文献   

16.
17.
G-quadruplexes (G4s) are non-B DNA structures present in guanine-rich regions of gene regulatory areas, promoters and CpG islands, but their occurrence and functions remain incompletely understood. Thus, methodology to identify G4 sequences is needed. Here, we describe the synthesis of a novel cyclic hepta-oxazole compound, L1Bio-7OTD (1), bearing a biotin affinity-tag as a tool to pull down G4 structures from mixtures of G4-forming and non G4-forming DNA sequences. We confirmed that it could pull down G4s associated with telomeres, bcl-2 gene, and c-kit gene.  相似文献   

18.
19.
Heteroduplexes between the viral DNA of phiX174 and DNA from the replicative form (RF) of phage G4 were examined by electron microscopy. The single Eco RI site of G4-RF was utilized as a physical marker by preparing the heteroduplexes from the denatured, linear DNA obtained by restricting G4-RF with Eco RI endonuclease. Restriction fragments of phiX were used in a separate series of heteroduplexes to align the heteroduplex map and the G4 Eco RI site with the similar genetic maps of the two phages. The positions of the branch migrating junctions of recombinant phiX-G4 figure-8s, previously located only with respect to the G4-Eco RI site, have now been located with high proability within the gene A region of the two genomes. The degree of mismatch between the known nucleotide sequences of phi X and G4 accounts for positions of all of the regions of single-strandedness in the observed heteroduplexes, but unexplained discrepancies were also found.  相似文献   

20.
An in vivo assay was used to define the DNA requirements at the bacteriophage G4 origin of complementary-strand DNA synthesis (G4 origin). This assay made use of an origin-cloning vector, mRZ1000, a defective M13 recombinant phage deleted for its natural origin of complementary-strand DNA synthesis. The minimal DNA sequence of the G4 genome sufficient for the restoration of normal M13 growth parameters was determined to be 139 bases long, located between positions 3868 and 4007. This G4-M13 construct was also found to give rise to proper initiation of complementary-strand synthesis in vitro. The cloned DNA sequence contains all the regions of potential secondary structure which have been implicated in primase-dependent replication initiation as well as additional sequence information. To address the role of one region which potentially forms a DNA secondary structure, the DNA sequence internal to the G4 origin was altered by site-directed mutagenesis. A 3-base insertion at the AvaII site as well as a 17-base deletion between the AvaI and AvaII sites both resulted in loss of origin function. The 17-base deletion was also generated within the G4 genome and found to dramatically reduce the infectious growth rate of the resulting phage. These results are discussed with respect to the role of the G4 origin as the recognition site for primase-dependent replication initiation and its possible role in stage II replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号