首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vacuolar membrane vesicles of Saccharomyces cerevisiae accumulate Ca2+ ion in the presence of ATP, not in the presence of ADP or adenyl-5'-yl imidodiphosphate. Calcium transport showed saturation kinetics with a Km value of 0.1 mM and optimal pH of 6.4. Ca2+ ion incorporated in the vesicles was exchangeable and released completely by a protonophore uncoupler, 3,5-di-tert-butyl-4-hydroxybenzilidenemalononitrile (SF6847), or calcium-specific ionophore, A23187. The transport required Mg2+ ion but was inhibited by Cu2+ or Zn2+ ions, inhibitors of H+-ATPase of the vacuolar membrane. The transport activity was sensitive to the H+-ATPase inhibitor N,N'-dicyclohexylcarbodiimide, but not to oligomycin or sodium vanadate. SF6847 or nigericin blocked Ca2+ uptake completely, but valinomycin stimulated it 1.35-fold. These results indicate that an electrochemical potential difference of protons is a driving force for this Ca2+ transport. The ATP-dependent formation of the deltapH in the vesicles and its partial dissipation by CaCl2 were demonstrated by fluorescence quenching of quinacrine. This Ca2+ uptake by vacuolar membrane vesicles is suggested to be catalyzed by a Ca2+/H+ antiport system.  相似文献   

2.
The H+-ATPase of Beta vacuolar membrane (tonoplast) comprises at least three functionally distinct subunits of Mr = 67,000, 57,000, and 16,000, respectively (Manolson, M. F., Rea, P. A., and Poole, R. J. (1985) J. Biol. Chem. 260, 12273-12279). The hydrophobic carboxyl reagent N,N'-dicyclohexylcarbodiimide (DCCD) inactivates the enzyme with pseudo-first order kinetics, and the concentration dependence of the reaction indicates that DCCD interacts with a single site on the enzyme to exert its inhibitory effect. The apparent pseudo-first order rate constant (k0) is reciprocally dependent on membrane protein concentration, which is expected if a large fraction of the DCCD partitions into the lipid phase. k0 has a nominal value of 1000 M-1 min-1 at a protein concentration of 250 micrograms/ml, although when phase partitioning is taken into account, the true, protein concentration-independent value of k0 is calculated to be about an order of magnitude lower. [14C]DCCD primarily labels the Mr = 16,000 polypeptide of native tonoplast vesicles. Binding is venturicidin-insensitive and occurs at a rate similar to the rate of enzyme inactivation, implying that inhibition is a direct result of covalent modification of the Mr = 16,000 polypeptide. Labeling of the containing Mr = 8,000 subunit of mitochondrial F0F1-ATPase is, on the other hand, faster by a factor of 5 and totally abolished by venturicidin. These results confirm that the Mr = 16,000 polypeptide which copurifies with tonoplast H+-ATPase activity is a subunit of the enzyme. Most of the DCCD-reactive Mr = 16,000 subunit is extracted from acetone:ethanol-washed tonoplast vesicles by chloroform:methanol. [14C]DCCD bound to the Mr = 16,000 polypeptide is enriched in the chloroform:methanol extract by 5-fold compared with native tonoplast and the specific activity (nmol of [14C]DCCD/mg of protein) can be increased a further 37-fold by chromatography on DEAE-Sephadex. It is concluded that the Mr = 16,000 subunit of the tonoplast H+-ATPase is a proteolipid.  相似文献   

3.
Vacuolar H(+)-ATPase was isolated from highly purified bovine kidney brush border, using a previously described immunoaffinity method. The affinity purified enzyme had reconstitutively active ATP-induced acidification that was inhibited by N-ethylmaleimide. The brush border H(+)-ATPase had a single pH optimum of 7.3, and a single Km for ATP of 360 microM. The enzyme showed no lipid activation; it had a substrate preference of ATP greater than ITP greater than UTP greater than GTP much greater than CTP, with an ATP:GTP selectivity of 1.69. The brush border H(+)-ATPase required no monovalent anion or cation for activity and was inhibited by the oxyanions NO3(-1) much greater than SO4(-2); sulfite stimulated activity at low concentrations and inhibited at higher concentrations. The inhibition produced by nitrate could not be attributed to dissociation of subunits from the enzyme. The divalent or trivalent cation preference was Mn+2 much greater than Mg+2 much greater than Co+2 greater than Al+3 greater than Ca+2 much greater than Ba+2,Sr+2; 1 mM Zn+2 inhibited the enzyme completely, but Cu+2 inhibited only 49% of activity at concentrations up to 5 mM. Sodium dodecyl sulfate-polyacrylamide gels of the brush border H(+)-ATPase showed subunits at Mr 70,000, a doublet at 56,000, 45,000, 42,000, 38,000, 33,000, 31,000, 15,000, 14,000, and 12,000. On two-dimensional gels, the pl value for the Mr 70,000 subunit was 6.3, for the Mr 56,000 was 6.4, and for the Mr 31,000 was 7.5-8.5, and microheterogeneity was observed in the Mr 56,000 and 31,000 subunits. A comparison of kidney cortex brush border H(+)-ATPase with kidney cortex microsomal H(+)-ATPase revealed differences in pH optimum, Km for ATP, lipid dependence, substrate preference, divalent ion preference, copper sensitivity, and in microheterogeneity of the Mr 56,000 and 31,000 subunits, providing evidence that different functional and structural classes of vacuolar H(+)-ATPase are segregated to specific membrane compartments.  相似文献   

4.
The properties of Mg2+-ATPase in the vacuole of Saccharomyces cerevisiae were studied, using purified intact vacuoles and right-side-out vacuolar membrane vesicles prepared by the method of Y. Ohsumi and Y. Anraku ((1981) J. Biol. Chem. 256, 2079). The enzyme requires Mg2+ ion but not Ca2+ in. Cu2+ and Zn2+ ions inhibit the activity. The optimal pH is at pH 7.0. The enzyme hydrolyzes ATP, GTP, UTP, and CTP in this order and the Km value for ATP was determined as 0.2 mM. It does not hydrolyze ADP, adenosyl-5'-yl imidodiphosphate, or p-nitrophenyl phosphate. ADP does not inhibit hydrolysis of ATP by the enzyme. The activities of intact vacuoles and of vacuolar membrane vesicles were stimulated 3- and 1.5-fold, respectively, by the protonophore uncoupler 3,5-di-tert-butyl-4-hydroxybenzilidenemalononitrile and the K+/H+ antiporter ionophore nigericin. Sodium azide at a concentration exerting an uncoupler effect also stimulated the activity. The activity was sensitive to the ATPase inhibitor N,N'-dicyclohexylcarbodiimide, but not to sodium vanadate. The ATP-dependent formation of an electrochemical potential difference of protons, measured by the flow-dialysis method, was determined as 180 mV, with contribution of 1.7 pH units, interior acid, and of a membrane potential of 75 mV. It is concluded that the Mg2+-ATPase of vacuoles is a new marker enzyme for these organelles and is a N,N'-dicyclohexylcarbodiimide-sensitive, H+-translocating ATPase whose catalytic site is exposed to the cytoplasm.  相似文献   

5.
Higher plant cells have one or more vacuoles important for maintaining cell turgor and for the transport and storage of ions and metabolites. One driving force for solute transport across the vacuolar membrane (tonoplast) is provided by an ATP-dependent electrogenic H+ pump. The tonoplast H+-pumping ATPase from oat roots has been solubilized with Triton X-100 and purified 16-fold by Sepharose 4B chromatography. The partially purified enzyme was sensitive to the same inhibitors (N-ethylmaleimide, N,N'-dicyclohexylcarbodiimide (DCCD), 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid, and NO-3) as the native membrane-bound enzyme. The partially purified enzyme was stimulated by Cl- (Km(app) = 1.0 mM) and hydrolyzed ATP with a Km(app) of 0.25 mM. Thus, the partially purified tonoplast ATPase has retained the properties of the native membrane-bound enzyme. [14C]DCCD labeled a single polypeptide (14-18 kDa) in the purified tonoplast ATPase preparation. Two major polypeptides, 72 and 60 kDa, that copurified with the ATPase activity and the 14-18-kDa DCCD-binding peptide are postulated to be subunits of a holoenzyme of 300-600 kDa (estimated by gel filtration). Despite several catalytic similarities with the mitochondrial H+-ATPase, the major polypeptides of the tonoplast ATPase differed in mass from the alpha and beta subunits (58 and 55 kDa) and the [14C] DCCD-binding proteolipid (8 kDa) of the oat F1F0-ATPase.  相似文献   

6.
Basal-lateral and brush border membranes from pig kidney cortex were prepared by differential centrifugation followed by free-flow electrophoresis. In each type of membrane, azide-insensitive, low-affinity Ca2+-ATPase and Mg2+-ATPase activities are demonstrated. A comparative study for both membranes further reveals the following analogies between these ATPases: (a) they show maximal activity between pH 8 and 8.5; (b) they exhibit Km values for Ca-ATP or Mg-ATP in the millimolar range and have a comparable low substrate specificity; (c) they are insensitive to 10 microM of vanadate, N,N'-dicyclohexylcarbodiimide, e diethylstilbestrol, quercetin, harmaline and amiloride. The partial inhibition by 1 mM of the various compounds is rather aspecific. In view of these similarities it is concluded that only one enzyme entity is responsible for the activity which is measured in both membrane types. The HCO3-stimulated Mg2+-ATPase activity in pig kidney cortex was also studied. This enzyme, however, is clearly of mitochondrial origin since the HCO3-stimulation coincides with the distribution profile of succinate dehydrogenase, a mitochondrial marker; and since it is inhibited by azide.  相似文献   

7.
Characterization of a protein serine kinase from yeast plasma membrane   总被引:4,自引:0,他引:4  
A casein kinase activity, which copurifies with the H+-ATPase activity during isolation of plasma membranes Saccharomyces cerevisiae and during centrifugation of the solubilized membrane extract through a sucrose gradient, is separated from the Mr = 100,000 ATPase catalytic polypeptide by subsequent DEAE-cellulose chromatography. The purified casein kinase activity exhibits a low Km of 12 microM MgATP, is maximally stimulated by 6 mM free Mg2+, and is 50% inhibited by 300 microM Zn2+, by 7.5 micrograms of heparin/ml, and by 300 microM orthovanadate. It phosphorylates only seryl residues. The purified casein kinase contains two polypeptides of Mr = 45,000 and 39,000 which yield antibodies which do not cross-react to each other. The two polypeptides seem to originate from a precursor of Mr = 85,000 which is detected by both antibodies in partly purified fractions. In the absence of casein, a zinc and heparin-sensitive phosphorylation of the ATPase polypeptide is observed in partly purified ATPase fractions, and a peptide of similar mobility is phosphorylated, among others, in isolated plasma membranes. The purified ATPase activity is markedly inhibited by incubation in the presence of acid phosphatase. In agreement with a recent report that the purified active ATPase molecule is largely phosphorylated (Yanagita, Y., Abdel-Ghany, M., Raden, D., Nelson, N., and Racker, E. (1987) Proc. Natl. Acad. Sci. U. S. A. 894, 925-929) this data suggests that dephosphorylation leads to deactivation of ATPase activity.  相似文献   

8.
Vacuolar membrane vesicles of Saccharomyces cerevisiae accumulated spermine and spermidine in the presence of ATP, not in the presence of ADP. Spermine and spermidine transport at pH 7.4 showed saturation kinetics with Km values of 0.2 mM and 0.7 mM, respectively. Spermine uptake was competitively inhibited by spermidine and putrescine, but was not affected by seven amino acids, substrates of active transport systems of vacuolar membrane. Spermine transport was inhibited by the H(+)-ATPase-specific inhibitors bafilomycin A1 and N,N'-dicyclohexylcarbodiimide, but not by vanadate. It was also sensitive to Cu2+ or Zn2+ ions, inhibitors of vacuolar H(+)-ATPase. Both 3,5-di-tert-butyl-4-hydroxybenzilidenemalononitrile (SF6847) and nigericin blocked completely the spermine uptake, but valinomycin did not. [14C]Spermine accumulated in the vesicles was exchangeable with unlabeled spermine and spermidine. However, it was released by a protonophore only in the presence of a counterion such as Ca2+. These results indicate that a polyamine-specific transport system depending on a proton potential functions in the vacuolar membrane of this organism.  相似文献   

9.
A Mg2+-dependent phosphatase has been purified to apparent homogeneity from turkey gizzard smooth muscle. The enzyme has a Mr = 43,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 44,500 as determined by sedimentation equilibrium centrifugation under nondenaturing conditions. Using polyacrylamide gel electrophoresis in the absence of sodium dodecyl sulfate all of the phosphatase activity was found to migrate as a single band, subsequently shown to have an Mr = 43,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme is inactive in the absence of Mg2+ and maximum activity is reached at a free concentration of 12 mM Mg2+. Mn2+ can replace Mg2+, but the activity is only about one-fifth of that found with 12 mM Mg2+. NaF and the nucleotides ATP, ADP, and AMP inhibit phosphatase activity. This inhibition appears to be independent of their ability to bind Mg2+. The phosphatase purified from turkey smooth muscle appears to be identical with that purified from canine heart (Binstock, J. F., and Li, H. C. (1979) Biochem. Biophys. Res. Commun. 87, 1226-1234) and rat liver (Hiraga, A., Kikuchi, K., Tamura, S., and Tsuiki, S. (1981) Eur. J. Biochem. 119, 503-510).  相似文献   

10.
Membrane ghosts were prepared from purified lysosomes (tritosomes) of rat liver by hypo-osmotic treatment. Mg2+-ATP-driven acidification was observed in the membrane ghosts using acridine orange as a fluorescent probe of the transmembrane pH gradient (delta pH). Its properties were the same as those of intact lysosomes reported previously (Ohkuma, S., Moriyama, Y., & Takano, T. (1982) Proc. Natl. Acad. Sci. U.S. 79, 2758-2762; Moriyama, Y., Takano, T., & Ohkuma, S. (1982) J. Biochem. 92, 1333-1336). The H+-pump was found to be electrogenic with use of bis(3-phenyl-5-oxoisoxasol-4-yl)pentamethine oxonol as a fluorescent membrane potential probe. Alkaline Mg2+-ATPase activity was also identified on the membranes. It showed a pH maximum of pH 8.0-8.5, a Km value for ATP of 0.36 mM and a Vmax of 0.41 units/mg protein at 30 degrees C. Its activity was inhibited by dicyclohexylcarbodiimide, tri-n-butyltin, azide and ADP, but not by ouabain or vanadate. It differed from mitochondrial F1F0-ATPase in sensitivities to N-ethylmaleimide, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, quercetin, and oligomycin. Since this alkaline Mg2+-ATPase activity is very similar to the H+-pump activity in its requirement for divalent cations, substrate specificity and sensitivities to various chemicals, it may act as a proton translocase (H+-pump). Possible mechanisms of action of some chemicals, such as 4-acetamide-4'-isothiocyanatostilbene-2,2'-disulfonic acid, that inhibited the H+-pump but not the alkaline Mg2+-ATPase, are discussed.  相似文献   

11.
Inorganic pyrophosphatase was purified from the vacuolar membrane of mung bean hypocotyl tissue by solubilization with lysophosphatidylcholine and QAE-Toyopearl chromatography. The molecular mass on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 73,000 daltons. Among the amino-terminal first 30 amino acids are 25 nonpolar hydrophobic residues. For maximum activity, the purified pyrophosphatase required 1 mM Mg2+ and 50 mM K+. The enzyme reaction was stimulated by exogenous phospholipid in the presence of detergent. Excess pyrophosphate as well as excess magnesium inhibited the pyrophosphatase. The enzyme reaction was strongly inhibited by ATP, GTP, and CTP at 2 mM, and the inhibition was reversed by increasing the Mg2+ concentration. An antibody preparation raised in a rabbit against the purified enzyme inhibited both the reactions of pyrophosphate hydrolysis of the purified preparation and the pyrophosphate-dependent H+ translocation in the tonoplast vesicles. N,N'-Dicyclohexylcarbodiimide became bound to the purified pyrophosphatase and inhibited the reaction of pyrophosphate hydrolysis. It is concluded that the 73-kDa protein in vacuolar membrane functions as an H+-translocating inorganic pyrophosphatase.  相似文献   

12.
Rat stimulated heavy gastric membranes enriched with (H+-K+)-ATPase, a marker for the apical membrane of the parietal cell, displayed a 32P-histone-dephosphorylating activity which appeared to be physically copurified with, but functionally independent of, the ATPase. The protein phosphatase activity was optimal at pH 7.5 and was inhibited by fluoride (50 mM), inorganic phosphate (50 mM), and p-chloromercuribenzoate (0.1 mM), but was insensitive to vanadate (1 mM). The 32P-phosphoproteins in the heavy gastric membranes were also dephosphorylated, apparently by their own membrane-bound phosphatase in the presence of Mg2+ at millimolar concentrations, which is likely to enhance membrane-membrane interaction. Heavy gastric membrane vesicles incubated with Mg2+ (2 mM) exhibited no alterations in K+-dependent ATP-hydrolyzing activity, Cl permeability, and protein and lipid compositions, but irreversibly lost the ATP, K+-dependent H+-pumping activity. Since valinomycin, a K+-specific ionophore, restored the intravesicular acidifying activity and an inhibitor of the protein phosphatase, inorganic phosphate, largely blocked the Mg2+-induced change in the membrane transport function, it is reasonable to propose that the phosphatase action on certain membrane proteins, possibly the putative K+ transporter or regulatory proteins, selectively decreases K+-conductance in the apical membranes of gastric parietal cells.  相似文献   

13.
M Vai  L Popolo  L Alberghina 《FEBS letters》1986,206(1):135-141
The plasma membrane H+-ATPases from fungi and yeasts have similar catalytic and molecular properties. A structural comparison has been performed using immunoblot analysis with polyclonal antibodies directed toward the 102 kDa polypeptide of the plasma membrane H+-ATPase from Neurospora crassa. A strong cross-reactivity is observed between the fungal H+-ATPase and the enzyme from the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Structural homologies are indicated also by the analysis of the cross-reactive peptides originated by proteolytic digestion of Neurospora and S. cerevisiae purified enzymes. Neither enzyme from these two sources appears to be glycosylated by a highly sensitive concanavalin A affinity assay on blotted proteins. A glycoprotein of Mr 115000 and pI 4.8-5, which comigrates with a cell cycle-modulated protein on 2D gel, is present in partially purified preparations of plasma membrane H+-ATPase of S. cerevisiae and it is shown to be structurally unrelated to H+-ATPase.  相似文献   

14.
A vacuolar H(+)-translocating inorganic pyrophosphatase was purified from pear fruit through selective detergent treatments, Superose 6 and Mono Q column chromatography. The specific activity of the purified enzyme was 850 mumol h-1 mg protein-1. The Mr of V-PPase was 66 kDa by SDS-PAGE and the polypeptide cross-reacted with the antiserum against V-PPase of mung bean. The purified V-PPase was stimulated by potassium and inhibited by calcium and N, N'-dicyclohexylcarbodiimide.  相似文献   

15.
We have identified and characterized calcium transport and the phosphorylated intermediate of the (Ca2+ + Mg2+)-ATPase in plasma membrane vesicles prepared from rat liver. The calcium transport did not absolutely require the presence of oxalate and was completely inhibited by 1 microM of ionophore A23187. Oxalate, which serves as a trapping agent in calcium uptake of skeletal muscle and liver microsomes, was not absolutely required to maintain the net accumulation of calcium. The Vmax and Km for calcium uptake were 35.2 +/- 10.1 pmol of calcium/mg of protein/min, and 17.6 +/- 2.5 nM of free calcium, respectively. Ten mM magnesium was required for the maximal accumulation of calcium. Substitution of 5 and 10 mM ADP, CTP, GTP, and UTP for ATP could not support calcium uptake. The calcium uptake was not affected by 0.5 mM ouabain, 20 mM azide, or 2 micrograms/ml of oligomycin but was inhibited in a dose-dependent fashion by vanadate, with a Ki of approximately 20 microM for vanadate. The substrate affinities and specificities of this calcium-transport activity suggest that it is closely associated with the (Ca2+ + Mg2+)-ATPase reported in the plasma membranes of liver (Lotersztajn, S., Hanoune, J., and Pecker, F. (1981) J. Biol. Chem. 256, 11209-11215). A calcium-stimulated and magnesium-dependent phosphoprotein was also demonstrated in the same membrane vesicles. The free calcium concentration at which its phosphorylation was half-maximal was 15.5 +/- 5.6 nM. Sodium fluoride, ouabain, sodium azide, oligomycin, adriamycin, and N,N'-dicyclohexylcarbodiimide did not affect its formation while vanadate at 100 microM inhibited the calcium-dependent phosphorylation by approximately 60%. The properties of this phosphoprotein suggest that it may be the phosphorylated intermediate of the (Ca2+ + Mg2+)-ATPase in the plasma membranes of rat liver.  相似文献   

16.
Membrane-bound ATPase was found in membranes of the archaebacterium Methanosarcina barkeri. The ATPase activity required divalent cations, Mg2+ or Mn2+, and maximum activity was obtained at pH 5.2. The activity was specifically stimulated by HSO3- with a shift of optimal pH to 5.8, and N,N'-dicyclohexylcarbodiimide inhibited ATP hydrolysis. The enzyme could be solubilized from membranes by incubation in 1 mM Tris-maleate buffer (pH 6.9) containing 0.5 mM EDTA. The solubilized ATPase was purified by DEAE-Sepharose and Sephacryl S-300 chromatography. The molecular weight of the purified enzyme was estimated to be 420,000 by gel filtration through Sephacryl S-300. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate revealed two classes of subunit, Mr 62,000 (alpha) and 49,000 (beta) associated in the molar ratio 1:1. These results suggest that the ATPase of M. barkeri is similar to the F0F1 type ATPase found in many eubacteria.  相似文献   

17.
The plasma membrane of Saccharomyces cerevisiae has a Mg2+-dependent ATPase which is distinct from the mitochondrial Mg2+-ATPase and at the pH optimum of 5.5 has a Km for ATP of 1.7 mM and a Vmax of 0.42 mumol of ATP hydrolyzed/mg/min. At least three protein components of the crude membrane (Mr = 210,000, 160,000 and 115,000) are labeled with [gamma"32P]ATP at pH 5.5. These phosphoproteins form rapidly in the presence of Mg2+, rapidly turn over the bound phosphate when unlabeled ATP is added, and dephosphorylate after incubation in the presence of hydroxylamine. Vanadate, an inhibitor of the Mg2+-ATPase activity, blocks the phosphorylation of the 210,000- and 115,000-dalton proteins. At pH 7.0, only the 210,000- and 160,000-dalton proteins are phosphorylated. While these three phosphorylated intermediates have not been unambiguously identified as components of the Mg2+-ATPase, the finding of such phosphorylated components in association with that activity implies that this enzyme differs in mechanism from the mitochondrial proton pump and that it is similar in mechanism to the metal ion pumps ((Na+-K+)-ATPase and Ca2+-ATPase) of the mammalian plasma membrane.  相似文献   

18.
Shono M  Wada M  Fujii T 《Plant physiology》1995,108(4):1615-1621
A Na+ -ATPase was partially purified from plasma membranes of the marine alga Heterosigma akashiwo. The plasma membranes of H. akashiwo cells were collected by differential centrifugation with subsequent discontinuous gradient centrifugation. Na+ -ATPase activity was associated with the resultant plasma membrane fraction and was stimulated to the greatest extent in the presence of 100 to 200 mM Na+, 10 mM K+, and 5 mM Mg2+ ions, pH 8.0. The Km value for Na+ ions was 12.2 mM. An apparent Km value for ATP was 880 [mu]M. A 140-kD phosphorylated intermediate was also detected in the same fraction in the presence of both Mg2+ and Na+ ions, and this protein was dephosphorylated upon the addition of K+ ions. We could partially purify the 140-kD protein after solubilization by Suc monolaurate and fractionation by sequential column chromatography on Sephacryl S-300, DEAE-Sepharose CL-6B, and Mono-Q columns. The purified 140-kD polypeptide could also be phosphorylated and be detected after acid sodium dodecyl sulfate-polyacryl-amide gel electrophoresis in the presence of Na+ and Mg2+ ions.  相似文献   

19.
The F1 portion of the H+-ATPase from Clostridium thermoaceticum was purified to homogeneity by solubilization at low ionic strength, ion-exchange chromatography, and gel filtration. The last indicated the Mr to be 370,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the pure enzyme revealed four bands with Mr corresponding to 60,000, 55,000, 37,000, and 17,000 in an apparent molar ratio of 3:3:1:1. The purified enzyme would bind to stripped membranes to reconstitute dicyclohexylcarbodiimide-sensitive ATPase activity. Phosphohydrolase activity, measured at 58 degrees C, was optimal at pH 8.5. In the presence of a 1 mM excess of Mg2+ over the concentration of ATP, the Km for ATP was 0.4 mM, and the Vmax was 6.7 mumol min-1 mg-1. Unlike the membrane-bound F1F0 complex, the F1-ATPase was relatively insensitive to the inhibitors dicyclohexylcarbodiimide and tributyltin chloride. Both the complex and the F1-ATPase were inhibited by quercetin, azide, 7-chloro-4-nitro-benz-2-oxa-1,3-diazole, and free magnesium, and both were stimulated by primary alcohols and sulfite. In whole cells, the F1F0-ATPase catalyzed the synthesis of ATP in response to a pH gradient.  相似文献   

20.
The state of assembly of the (H+ + K+)-ATPase in purified hog gastric mucosa membranes was studied by target size analysis applied to radiation-induced enzyme inactivation and polypeptide degradation data. Radiation inactivated the Mg2+-ATPase, K+-stimulated ATPase, and p-nitrophenyl phosphatase activities of the membrane preparation with a dose dependence characteristic of a target size of 270,000-daltons. Radiation also bleached the major 100,000-dalton sodium dodecyl sulfate-gel electrophoresis band of this preparation, indicating a radiation-induced degradation. This apparent polypeptide degradation exhibited a dose dependency corresponding to a target size of 250,000 daltons in situ. It is suggested that the gastric ATPase is a trimeric assembly of the 100,000-dalton polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号