首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
ADAM 12-S cleaves IGFBP-3 and IGFBP-5 and is inhibited by TIMP-3   总被引:19,自引:0,他引:19  
ADAMs are a family of multidomain proteins having proteolytic and cell adhesion activities. We have previously shown that ADAM 12-S, the secreted soluble form of human ADAM 12, is a catalytically active protease. We now describe the purification of full-length recombinant ADAM 12-S and demonstrate that it cleaves insulin-like growth factor binding protein-3 (IGFBP-3). This result supports a role for ADAM 12-S in the degradation of IGFBP-3 in the blood of pregnant women. Furthermore, we tested for proteolysis of other members of the IGF binding protein family and found that ADAM 12-S cleaves IGFBP-5 in addition to IGFBP-3, but does not cleave IGFBP-1, -2, -4, or -6. ADAM 12-S may therefore be the IGFBP-5 protease that is secreted by osteoblasts and other cells. Cleavage of both IGFBP-3 and -5 by ADAM 12-S was inhibited by TIMP-3, raising the possibility that TIMP-3 is a physiological inhibitor of ADAM 12-S.  相似文献   

2.
The present study investigated the ability of the arginine analog L-NAME (N(omega)-Nitro-L-arginine methyl ester) to modulate the activity of arginase. L-NAME inhibited the activity of arginase in lysates from rat colon cancer cells and liver. It also inhibited the arginase activity of tumor cells in culture. Furthermore, in vivo treatment of rats with L-NAME inhibited arginase activity in tumor nodules and liver, and the effect persisted after treatment ceased. The effect of L-NAME on arginase requires consideration when it is used in vivo in animal models with the aim of inhibiting endothelial NO-synthase, another enzyme using arginine as substrate.  相似文献   

3.
ADAM (a disintegrin and metalloproteinase) 10 is a key member of the ADAM family of disintegrin and metalloproteinases which process membrane-associated proteins to soluble forms in a process known as 'shedding'. Among the major targets of ADAM10 are Notch, EphrinA2 and CD44. In many cell-based studies of shedding, the activity of ADAM10 appears to overlap with that of ADAM17, which has a similar active-site topology relative to the other proteolytically active ADAMs. The tissue inhibitors of metalloproteinases, TIMPs, have proved useful in the study of ADAM function, since TIMP-1 inhibits ADAM10, but not ADAM17; however, both enzymes are inhibited by TIMP-3. In the present study, we show that, in comparison with ADAM17 and the MMPs (matrix metalloproteinases), the N-terminal domains of TIMPs alone are insufficient for the inhibition of ADAM10. This knowledge could form the basis for the design of directed inhibitors against different metalloproteinases.  相似文献   

4.
5.
In this study we find that the function of BRCA1 inhibits the microtubule nucleation function of centrosomes. In particular, cells in early S phase have quiescent centrosomes due to BRCA1 activity, which inhibits the association of gamma-tubulin with centrosomes. We find that modification of either of two specific lysine residues (Lys-48 and Lys-344) of gamma-tubulin, a known substrate for BRCA1-dependent ubiquitination activity, led to centrosome hyperactivity. Interestingly, mutation of gamma-tubulin lysine 344 had a minimal effect on centrosome number but a profound effect on microtubule nucleation function, indicating that the processes regulating centrosome duplication and microtubule nucleation are distinct. Using an in vitro aster formation assay, we found that BRCA1-dependent ubiquitination activity directly inhibits microtubule nucleation by centrosomes. Mutant BRCA1 protein that was inactive as a ubiquitin ligase did not inhibit aster formation by the centrosome. Further, a BRCA1 carboxy-terminal truncation mutant that was an active ubiquitin ligase lacked domains critical for the inhibition of centrosome function. These experiments reveal an important new functional assay regulated by the BRCA1-dependent ubiquitin ligase, and the results suggest that the loss of this BRCA1 activity could cause the centrosome hypertrophy and subsequent aneuploidy typically found in breast cancers.  相似文献   

6.
In the central nervous system (CNS), extracellular concentrations of amino acids (e.g., aspartate, glutamate) and divalent metals (e.g., zinc, copper, manganese) are primarily regulated by astrocytes. Adequate glutamate homeostasis and control over extracellular concentrations of these excitotoxic amino acids are essential for the normal functioning of the brain. Not only is glutamate of central importance for nitrogen metabolism but, along with aspartate, it is the primary mediator of excitatory pathways in the brain. Similarly, the maintenance of proper Mn levels is important for normal brain function. Brain glutamate is removed from the extracellular fluid mainly by astrocytes via high affinity astroglial Na+-dependent excitatory amino acid transporters, glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1). The effects of Mn on specific glutamate transporters have yet to be determined. As a first step in this process, we examined the effects of Mn on the transport of [D-2, 3-3H]D-aspartate, a non-metabolizable glutamate analog, in Chinese hamster ovary cells (CHO) transfected with two glutamate transporter subtypes, GLAST (EAAT1) or GLT-1 (EAAT2). Mn-mediated inhibition of glutamate transport in the CHO-K1 cell line DdB7 was pronounced in both the GLT-1 and GLAST transfected cells. This resulted in a statistically significant inhibition (p<0.05) of glutamate uptake compared with transfected control in the absence of Mn treatment. These studies suggest that Mn accumulation in the CNS might contribute to dysregulation of glutamate homeostasis.  相似文献   

7.
8.
Although Notch plays a crucial role in T cell development, regulation of Notch signaling in the thymus is not well understood. Kuzbanian, an ADAM protease, has been implicated in the cleavage of both Notch receptors and the Notch ligand, Delta. In this study we show that the expression of a dominant-negative form of Kuzbanian (dnKuz) leads to reduced TCRbeta expression in double-negative thymocytes and to a partial block between the double-negative to double-positive stages of development. These defects were rescued by overexpression of Delta-1 on thymocytes. Mixed chimeras showed a cell-autonomous block by dnKuz, but non-cell-autonomous rescue by Delta-1. This suggests that dnKuz impairs Notch signaling in receiving cells, and increasing Delta-1 on sending cells overcomes this defect. Interestingly, the expression of an activated form of Notch-1 rescued some, but not all, the defects in dnKuz Tg mice. Our data suggest that multiple Notch-dependent steps in early thymocyte development require Kuzbanian, but differ in the involvement of other Notch signaling components.  相似文献   

9.
10.
Bisphosphonates (BPs) are drugs widely used in the treatment of various bone diseases. BPs localize to bone mineral, and their concentration in resorption lacunae could reach almost milimolar levels. Bone alkaline phosphatase (ALP) is a membrane-bound exoenzyme that has been implicated in bone formation and mineralization. In this study, we investigated the possible direct effect of three N-containing BPs (alendronate, pamidronate, and zoledronate) on the specific activity of bone ALP obtained from an extract of UMR106 rat osteosarcoma cells. Enzymatic activity was measured by spectrophotometric detection of p-nitrophenol product and by in situ visualization of ALP bands after an electrophoresis on cellulose acetate gels. Because ALP is a metalloprotein that contains Zn2+ and Mg2+, both of which are necessary for catalytic function, we also evaluated the participation of these divalent cations in the possible effect of BPs on enzymatic activity. All BPs tested were found to dose-dependently inhibit spectrophotometrically measured ALP activity (93–42% of basal) at concentrations of BPs between 10−5 M and 10−4 M, the order of potency being zoledronate ≊ alendronate > pamidronate. However, coincubation with excess Zn2+ or Mg2+ completely abolished this inhibitory effect. Electrophoretic analysis rendered very similar results: namely a decrease in the enzymatic activity of the bone-ALP band by BPs and a reversion of this inhibition by divalent cations. This study shows that N-containing BPs directly inhibit bone-ALP activity, in a concentration range to which this exoenzyme is probably exposed in vivo. In addition, this inhibitory effect is most possibly the result of the chelation of Zn2+ and Mg2+ ions by BPs.  相似文献   

11.
The oligonucleotide/oligosaccharide-binding (OB) fold is central to the architecture of single-stranded- DNA-binding proteins, which are polypeptides essential for diverse cellular processes, including DNA replication, repair, and recombination. In archaea, single-stranded DNA-binding proteins composed of multiple OB folds and a zinc finger domain, in a single polypeptide, have been described. The OB folds of these proteins were more similar to their eukaryotic counterparts than to their bacterial ones. Thus, the archaeal protein is called replication protein A (RPA), as in eukaryotes. Unlike most organisms, Methanosarcina acetivorans harbors multiple functional RPA proteins, and it was our interest to determine whether the different proteins play different roles in DNA transactions. Of particular interest was lagging-strand DNA synthesis, where recently RPA has been shown to regulate the size of the 5' region cleaved during Okazaki fragment processing. We report here that M. acetivorans RPA1 (MacRPA1), a protein composed of four OB folds in a single polypeptide, inhibits cleavage of a long flap (20 nucleotides) by M. acetivorans flap endonuclease 1 (MacFEN1). To gain a further insight into the requirement of the different regions of MacRPA1 on its inhibition of MacFEN1 endonuclease activity, N-terminal and C-terminal truncated derivatives of the protein were made and were biochemically and biophysically analyzed. Our results suggested that MacRPA1 derivatives with at least three OB folds maintained the properties required for inhibition of MacFEN1 endonuclease activity. Despite these interesting observations, further biochemical and genetic analyses are required to gain a deeper understanding of the physiological implications of our findings.  相似文献   

12.
The regulatory influences of glycogen synthase kinase-3 beta (GSK3 beta) and lithium on the activity of cyclic AMP response element binding protein (CREB) were examined in human neuroblastoma SH-SY5Y cells. Activation of Akt (protein kinase B) with serum-increased phospho-serine-9-GSK3 beta (the inactive form of the enzyme), inhibited GSK3 beta activity, and increased CREB DNA binding activity. Inhibition of GSK3 beta by another paradigm, treatment with the selective inhibitor lithium, also increased CREB DNA binding activity. The inhibitory regulation of CREB DNA binding activity by GSK3 beta also was evident in differentiated SH-SY5Y cells, indicating that this regulatory interaction is maintained in non-proliferating cells. These results demonstrate that inhibition of GSK3 beta by serine-9 phosphorylation or directly by lithium increases CREB activation. Conversely, overexpression of active GSK3 beta to 3.5-fold the normal levels completely blocked increases in CREB DNA binding activity induced by epidermal growth factor, insulin-like growth factor-1, forskolin, and cyclic AMP. The inhibitory effects due to overexpressed GSK3 beta were reversed by treatment with lithium and with another GSK 3beta inhibitor, sodium valproate. Overall, these results demonstrate that GSK3 beta inhibits, and lithium enhances, CREB activation.  相似文献   

13.
Linares LK  Scheffner M 《FEBS letters》2003,554(1-2):73-76
The proto-oncoprotein Hdm2 is a member of the RING finger-type family of ubiquitin-protein ligases E3. The RING finger domain is assumed to mediate the specific interaction of an E3 with its cognate ubiquitin-conjugating enzyme E2, which catalyzes the covalent attachment of ubiquitin to substrate proteins. In addition, the RING finger domain of Hdm2 is involved in Hdm2 homooligomer formation and has the capacity to bind to RNA in a sequence-specific manner. Here we report that interaction with nucleic acids interferes with both Hdm2/Hdm2 complex formation and auto-ubiquitination of Hdm2 in vitro. Furthermore, although binding of Hdm2 to the tumor suppressor p53 is not inhibited by nucleic acids, Hdm2-mediated ubiquitination of p53 is significantly decreased. Taken together, these results provide the first example of an E3 whose activity can be regulated by direct interaction with nucleic acids.  相似文献   

14.
Dimethyl sulfoxide (DMSO) exerts a number of biological effects, the most frequently cited being induction of cell differentiation. The compound also increases invasiveness and metastatic potential. In contrast to the many reports of DMSO-induced cell differentiation, we report here that DMSO inhibits the morphological differentiation of human cytotrophoblast cells to syncytiotrophoblast, as revealed by immunofluorescence staining for desmosomal protein and nuclei. Cytotrophoblast cells treated with DMSO under differentiation-inducing conditions remained mononucleated with intense desmosomal staining. The effect was dose dependent, with a maximal effect seen at 1.5% DMSO. Concentrations of ≤0.5% had no effect and concentrations >2% were cytotoxic. In addition to these morphological changes, DMSO inhibited secretion of human chorionic gonadotropin in a dose-dependent manner. At a concentration of 1.5%, DMSO inhibited secretion by 70%. If cytotrophoblast cells were cultured in the presence of DMSO and then switched to DMSO-free medium, they proceeded to differentiate normally. While the precise mechanism of action remains unknown, judicious use of DMSO may be a useful tool for studying and manipulating the differentiation of human trophoblast cells in vitro. The findings also indicate that care should be used in interpreting results obtained using DMSO as a carrier in drug and inhibitor studies. J. Cell Biochem. 65:460–468. © 1997 Wiley-Liss Inc.  相似文献   

15.
16.
17.
Pieper MP  Chaudhary NI  Park JE 《Life sciences》2007,80(24-25):2270-2273
Acetylcholine (ACh) has been suggested to exert various pathophysiological activities in the airways in addition to vagally-induced bronchoconstriction. This archetypal neurotransmitter and other components of the cholinergic system are expressed in a number of non-neuronal cells in the airways. Non-neuronal ACh released from these cells may affect fibroblasts (Fb) as well as inflammatory cells in lung tissue. Tiotropium bromide is a once-a-day antimuscarinic drug, marketed under the brand name Spiriva, for the treatment of chronic obstructive pulmonary disease (COPD). Besides its proven direct bronchodilatory activity, recent evidence suggests that tiotropium may be able to reduce the frequency of exacerbations and attenuate the decline in lung function, thus improving the course of obstructive airway diseases. The aim of the present study was to investigate the effects of tiotropium on the ACh-induced proliferation of primary human Fb isolated from biopsies of lung fibrosis patients and myofibroblasts (MyFb) derived from these cells. A human lung Fb cell line acted as control. Expression of muscarinic receptor subtypes M1, M2 and M3 was demonstrated by RT-PCR in both cell types. Acetylcholine stimulated proliferation in all cells investigated. Tiotropium concentration-dependently inhibited the ACh-induced proliferation in both the Fb and MyFb with a maximum effect at 30 nM. These results suggest that cholinergic stimuli mediated by muscarinic receptors could contribute to remodeling processes in chronic airway disease. Tiotropium bromide may have a beneficial influence on airway remodeling processes in chronic airway diseases through antiproliferative effects on fibroblasts and myofibroblasts.  相似文献   

18.
19.
Nerve growth factor (NGF)1 is a neurotrophic polypeptide that acts via specific receptors to promote the survival and growth of neurons. To delineate the NGF domain(s) responsible for eliciting biological activity, we synthesized small peptides corresponding to three regions in NGF that are hydrophilic and highly conserved. Several peptides from mouse NGF region 26-40 inhibited the neurite-promoting effect of NGF on sensory neurons in vitro. Inhibition was sequence-specific and could be overcome by increasing the concentration of NGF. Moreover, peptide actions were specific for NGF-mediated events in that they failed to block the neurotrophic activity of ciliary neuronotrophic factor (CNTF) or phorbol 12-myristate 13-acetate (PMA). In spite of the inhibition of NGF activity, peptides did not affect the binding of radiolabeled NGF. These studies define one region of NGF that may be required for neurotrophic activity.  相似文献   

20.
We have recently reported that the adenylate cyclase activator, forskolin, induces in the rat ovarian follicle both cAMP accumulation and oocyte maturation. We demonstrate here, on the other hand, that the spontaneous maturation in vitro of isolated rat cumulus-enclosed oocytes is inhibited by forskolin. The inhibitory effect of forskolin is dose dependent with an ED50 at 15 microM. Forskolin inhibition decreases gradually with time, being completely relieved by 20 h of culture. Methylisobutylxanthine significantly prolongs the duration of the inhibitory action of forskolin. In addition to its inhibitory effect on oocyte maturation, forskolin triggers the cumulus-oocyte complex to generate cAMP. Cyclic AMP accumulation is maximally stimulated by 100 microM of forskolin with an ED50 at 60 microM. The potency of the cumulus-oocyte complex to respond to forskolin in terms of cAMP accumulation decreases with time. The pattern of the decrease in the potency of the cumulus-oocyte complexes to generate cAMP corresponds with the relief of its inhibitory influence on the oocyte. These results indicate that inhibition of maturation of the cumulus-enclosed oocyte may be coupled to elevation of cAMP levels in the cumulus-oocyte complex. As isolated cumulus-free oocytes are not inhibited by forskolin, we suggest that in the cumulus-enclosed oocyte system, cAMP generated by the cumulus cells is apparently transferred to the oocyte and maintains it in a meiotically arrested state. Maturation in this system occurs upon relief of inhibition which results from cessation of cAMP generation by the cumulus cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号