首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rho family small GTPases are key regulators of the actin cytoskeleton in various cell types. The Rnd proteins, Rnd1, Rnd2, and Rnd3/RhoE, have been recently identified as new members of the Rho family of GTPases, and expression of Rnd1 or Rnd3 in fibroblasts causes the disassembly of actin stress fibers and the retraction of the cell body to produce extensively branching cellular processes. Here we have performed a yeast two-hybrid screening by using Rnd1 as bait and identified a novel protein that specifically binds to Rnd GTPases. We named this protein Socius. Socius directly binds to Rnd GTPases through its COOH-terminal region. When transfected into COS-7 cells, Socius is translocated to the cell periphery in response to Rnd1 and Rnd3 and colocalized with the GTPases. While expression of wild-type Socius in Swiss 3T3 fibroblasts has little effect on the actin cytoskeleton, the expression of a membrane-targeted form of Socius, containing a COOH-terminal farnesylation motif (Socius-CAAX), induces a dramatic loss of stress fibers. The inhibitory effect of Socius-CAAX on stress fiber formation is enhanced by truncation of its NH(2) terminus. On the other hand, the expression of Socius-CAAX or its NH(2) terminus-truncated form suppresses the Rnd-induced retraction of the cell body and the production of extensively branching cellular processes, although the disassembly of stress fibers is observed. We propose that Socius participates in the Rnd GTPase-induced signal transduction pathways, leading to reorganization of the actin cytoskeleton.  相似文献   

2.
A critical role for the small GTPase Rho and one of its targets, p160ROCK (a Rho-associated coiled coil-forming protein kinase), in neurite remodeling was examined in neuroblastoma N1E-115 cells. Using wild-type and a dominant-negative form of p160ROCK and a p160ROCK-specific inhibitor, Y-27632, we show here that p160ROCK activation is necessary and sufficient for the agonist-induced neurite retraction and cell rounding. The neurite retraction was accompanied by elevated phosphorylation of myosin light chain and the disassembly of the intermediate filaments and microtubules. Y-27632 blocked both neurite retraction and the elevation of myosin light chain phosphorylation in a similar concentration-dependent manner. On the other hand, suppression of p160ROCK activity by expression of a dominant-negative form of p160ROCK induced neurites in the presence of serum by inducing the reassembly of the intermediate filaments and microtubules. The neurite outgrowth by the p160ROCK inhibition was blocked by coexpression of dominant-negative forms of Cdc42 and Rac, indicating that p160ROCK constitutively and negatively regulates neurite formation at least in part by inhibiting activation of Cdc42 and Rac. The assembly of microtubules and intermediate filaments to form extended processes by inhibitors of the Rho–ROCK pathway was also observed in Swiss 3T3 cells. These results indicate that Rho/ROCK-dependent tonic inhibition of cell process extension is exerted via activation of the actomysin-based contractility, in conjunction with a suppression of assembly of intermediate filaments and microtubules in many cell types including, but not exclusive to, neuronal cells.  相似文献   

3.
The Rho family of small GTPases has been implicated in the reorganization of actin cytoskeleton and subsequent morphological changes in various cells. Rnd2 is a member of the Rnd subfamily, comprising Rnd1, Rnd2, and Rnd3. In contrast to Rnd1 and Rnd3, displaying an antagonistic action for RhoA signaling, signaling pathways of Rnd2 are not well known. Here we have performed a yeast two-hybrid screen using Rnd2 as bait and identified a novel Rnd2 effector protein, predominantly expressed in neurons, including cortical and hippocampal neurons. We named it Pragmin (pragma of Rnd2). In in vivo and in vitro binding assays, Pragmin specifically binds to Rnd2 among the Rho family GTPases in a GTP-dependent manner. Rnd2-bound Pragmin significantly stimulates RhoA activity and induces cell contraction through RhoA and the Rho-kinase pathway in HeLa cells. In PC12 cells, expressing Pragmin inhibits nerve growth factor-induced neurite outgrowth in response to Rnd2, and knock-down of Pragmin by Pragmin-specific small interfering RNA enhances neurite elongation. Therefore, Rnd2 regulates neurite outgrowth by functioning as the RhoA activator through Pragmin, in contrast to Rnd1 and Rnd3 inhibiting RhoA signaling.  相似文献   

4.
Neurons extend neurites from the cell body before formation of the polarized processes of an axon and dendrites. Neurite outgrowth involves remodeling of the cytoskeletal components, which are initially regulated by small GTPases of the Rho family. Here we show that c-Jun N-terminal kinase (JNK), which is controlled by Rho GTPases Rac1 and Cdc42, is activated following neurite extension in mouse N1E-115 neuroblastoma cells as a model. The extension is inhibited by JNK inhibitors (SP600125 and the small JNK-binding peptide) and Clostridium difficile Toxin B, the inhibitor for Rho GTPases. Additionally, paxillin, the multifunctional focal adhesion protein, is phosphorylated at Ser 178 by upregulation of the Rac1/Cdc42/JNK cascade. Conversely, transfection of the paxillin construct harboring the Ser 178-to-Ala mutation into cells inhibits neurite extension. Taken together, these results suggest the novel role of the Rac1/Cdc42/JNK signaling cascade in neurite extension and indicate that the downstream target paxillin may be one of the convergent points of various signaling pathways underlying neurite extension.  相似文献   

5.
The Rho family of small GTPases has been shown to be involved in the regulation of neuronal morphology, and Rac and Rho exert antagonistic actions in neurite formation. In this study, we have examined the cross-talk between Rac and Rho in relation to the nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. NGF induced a rapid activation of Rac1 and suppression of RhoA activity. Constitutively active RhoA, RhoA(V14), or constitutively active Galpha(12)-induced endogenous RhoA activation inhibited the NGF-induced Rac1 activation without any effect on the NGF-induced extracellular signal-regulated kinase activation. Moreover, Y-27632, an inhibitor of Rho-associated kinase, completely abolished the RhoA-induced down-regulation of the NGF-induced Rac1 activation. We also revealed that NGF induced a rapid recruitment of Rac1 to the cell surface protrusion sites and formed filamentous actin-rich protrusions. Activation of RhoA and Rho-associated kinase formed a thick ringlike structure of cortical actin filaments at the cell periphery and then inhibited the NGF-induced recruitment of Rac1 to protrusions. These results indicate that RhoA down-regulates the NGF- induced Rac1 activation through Rho-associated kinase, inhibiting the neurite formation.  相似文献   

6.
Regulation of neuronal morphology and activity-dependent synaptic modifications involves reorganization of the actin cytoskeleton. Dynamic changes of the actin cytoskeleton in many cell types are controlled by small GTPases of the Rho family, such as RhoA, Rac1 and Cdc42. As key regulators of both actin and microtubule cytoskeleton, Rho GTPases have also emerged as important regulators of dendrite and spine structural plasticity. Multiple studies suggest that Rac1 and Cdc42 are positive regulators promoting neurite outgrowth and growth cone protrusion, while the activation of RhoA induces stress fiber formation, leading to growth cone collapse and neurite retraction. This review focuses on recent advances in our understanding of the molecular mechanisms underlying physiological and pathological functions of Cdc42 in the nervous system. We also discuss application of different FRET-based biosensors as a powerful approach to examine the dynamics of Cdc42 activity in living cells.  相似文献   

7.
Rnd proteins comprise a branch of the Rho family of small GTP-binding proteins, which have been implicated in rearrangements of the actin cytoskeleton and microtubule dynamics. Particularly in the nervous system, Rnd family proteins regulate neurite formation, dendrite development and axonal branching. A secreted form of the co-chaperone Stress-Inducible Protein 1 (STI1) has been described as a prion protein partner that is involved in several processes of the nervous system, such as neurite outgrowth, neuroprotection, astrocyte development, and the self-renewal of neural progenitor cells. We show that cytoplasmic STI1 directly interacts with the GTPase Rnd1. This interaction is specific for the Rnd1 member of the Rnd family. In the COS collapse assay, overexpression of STI1 prevents Rnd1–plexin-A1-mediated cytoskeleton retraction. In PC-12 cells, overexpression of STI1 enhances neurite outgrowth in cellular processes initially established by Rnd1. Therefore, we propose that STI1 participates in Rnd1-induced signal transduction pathways that are involved in the dynamics of the actin cytoskeleton.  相似文献   

8.
Cytoskeletal reorganization, including reconstruction of actin fibers and microtubules, is essential for various biological processes, such as cell migration, proliferation and dendrite formation. We show here that methylophiopogonanone B (MOPB) induces cell morphological change via melanocyte dendrite retraction and stress fiber formation. Since members of the Rho family of small GTP-binding proteins act as master regulators of dendrite formation and actin cytoskeletal reorganization, and activated Rho promotes dendrite retraction and stress fiber formation, we studied the effects of MOPB on the small GTPases using normal human epidermal melanocytes and HeLa cells. In in vitro binding assay, MOPB significantly increased GTP-Rho, but not GTP-Rac or GTP-CDC42. Furthermore, a Rho inhibitor, a Rho kinase inhibitor and a small GTPase inhibitor each blocked MOPB-induced stress fiber formation. The effect of MOPB on actin reorganization was blocked in a Rho dominant negative mutant. These results suggest MOPB acts via the Rho signaling pathway, and it may directly or indirectly activate Rho. Quantitative Western blot analysis indicated that MOPB also induced microtubule destabilization and tubulin depolymerization. Thus, MOPB appears to induce Rho activation, resulting in actin cytoskeletal reorganization, including dendrite retraction and stress fiber formation.  相似文献   

9.
The c-fes locus encodes a cytoplasmic protein-tyrosine kinase (Fes) previously shown to accelerate nerve growth factor (NGF)-induced neurite outgrowth in rat PC12 cells. Here, we investigated the role of the Rho family small GTPases Rac1 and Cdc42 in Fes-mediated neuritogenesis, which have been implicated in neuronal differentiation in other systems. Fes-induced acceleration of neurite outgrowth in response to NGF treatment was completely blocked by the expression of dominant-negative Rac1 or Cdc42. Expression of a kinase-active mutant of Fes induced constitutive relocalization of endogenous Rac1 to the cell periphery in the absence of NGF, and led to dramatic actin reorganization and spontaneous neurite extension. We also investigated the breakpoint cluster region protein (Bcr), which possesses the Dbl and PH domains characteristic of guanine nucleotide exchange factors for Rho family GTPases, as a possible link between Fes, Rac/Cdc42 activation, and neuritogenesis. Coexpression of a GFP-Bcr fusion protein containing the Fes binding and tyrosine phosphorylation sites (amino acids 162-413) completely suppressed neurite outgrowth triggered by Fes. Conversely, coexpression of full-length Bcr with wild-type Fes in PC12 cells induced NGF-independent neurite formation. Taken together, these data suggest that Fes and Bcr cooperate to activate Rho family GTPases as part of a novel pathway regulating neurite extension in PC12 cells, and provide more evidence for an emerging role for Fes in neuronal differentiation.  相似文献   

10.
It has been proposed that the cortical actin filament networks act as a cortical barrier that must be reorganized to enable docking and fusion of the synaptic vesicles with the plasma membranes. We identified a novel neuron-associated developmentally regulated protein, designated as Nadrin. Expression of Nadrin is restricted to neurons and correlates well with the differentiation of neurons. Nadrin has a unique structure; it contains a GTPase-activating protein (GAP) domain for Rho family GTPases, a potential coiled-coil domain, and a succession of 29 glutamines. In vitro the GAP domain activates RhoA, Rac1, and Cdc42 GTPases. Expression of Nadrin in NIH3T3 cells markedly reduced the number of the actin stress fibers and the formation of the ruffled membranes, suggesting that Nadrin regulates actin filament reorganization. In PC12 cells, Nadrin colocalized with synaptotagmin in the neurite termini and also with cortical actin filaments in the subplasmalemmal regions. Expression of Nadrin or its mutant composed of the coiled-coil and GAP domain enhanced Ca(2+)-dependent exocytosis of PC12 cells, but a mutant lacking the GAP domain inhibited exocytosis. These results suggest that Nadrin plays a role in regulating Ca(2+)-dependent exocytosis, most likely by catalyzing GTPase activity of Rho family proteins and by inducing the reorganization of the cortical actin filaments.  相似文献   

11.
Rho family GTPases are central regulators of neuronal morphology. Recently, Rnd proteins, Rnd1, Rnd2, and Rnd3/RhoE, have been identified as new members of Rho family GTPases. Of these, Rnd2 is specifically expressed in neurons in brain; however, the signaling pathways of Rnd2 are not known. Here we have performed a yeast two-hybrid screen using Rnd2 as a bait and identified a novel Rnd2-effector protein, expressed predominantly in brain. We named it Rapostlin (apostle of Rnd2). Rapostlin has two functional domains, Fer-CIP4 homology (FCH) domain at the amino terminus and SH3 (Src homology 3) domain at the carboxyl terminus. In in vitro binding assays, Rapostlin specifically binds to Rnd2 among the Rho family GTPases in a GTP-dependent manner, and the Rnd2-binding domain of Rapostlin is localized between FCH and SH3 domains. Rapostlin directly binds to microtubules, and the amino-terminal region containing the FCH domain of Rapostlin is essential for this interaction. In PC12 cells, Rapostlin induces neurite branching in response to Rnd2, and at least the amino-terminal region of Rapostlin is necessary for this activity. Therefore, Rapostlin is the first effector of Rnd2, regulating neurite branch formation.  相似文献   

12.
The cell cytoskeleton is widely acknowledged as a master for NK cell function. Specifically, actin filaments guide the NK cell binding to target cells, engendering the formation of the so-called immunological synapse, while microtubules direct the killer behavior. All these cytoskeleton-dependent activities are competently governed by the Rho GTPases, a family of regulatory molecules encompassing the three different subfamilies, Rho, Rac, and Cdc42. By using a Rac GTPase-activating bacterial protein toxin from Escherichia coli named cytotoxic necrotizing factor 1 (CNF1), we obtained results supporting the activation of Rac GTPase as a booster for effector cell-binding efficiency, recruitment ability, and, consequently, cytotoxicity. In particular, the augmented killer capacity of CNF1-treated NK cells was associated with the increased expression of certain cell adhesion or activation-associated molecules and the reshaping of the actin and microtubule networks. Importantly, CNF1 counteracted the activity exerted by toxins disrupting the cytoskeletal architecture. Hence, the activation of Rho GTPases, particularly Rac, induced by CNF1, appears to orchestrate a dynamic cross talk between microtubules and actin filaments, leading to a fruitful NK cell activity and polarization state. Our findings suggest that protein toxins might be viewed as modulators of NK cell cytotoxic activity and could possibly be regarded as useful pharmacological tools for certain Rho-linked immune diseases in the near future.  相似文献   

13.
GTPases of the Rho family regulate actinomyosin-based contraction in non-muscle cells. Activation of Rho increases contractility, leading to cell rounding and neurite retraction in neuronal cell lines. Activation of Rac promotes cell spreading and interferes with Rho-mediated cell rounding. Here we show that activation of Rac may antagonize Rho by regulating phosphorylation of the myosin-II heavy chain. Stimulation of PC12 cells or N1E-115 neuroblastoma cells with bradykinin induces phosphorylation of threonine residues in the myosin-II heavy chain; this phosphorylation is Ca2+ dependent and regulated by Rac. Both bradykinin-mediated and constitutive activation of Rac promote cell spreading, accompanied by a loss of cortical myosin II. Our results identify the myosin-II heavy chain as a new target of Rac-regulated kinase pathways, and implicate Rac as a Rho antagonist during myosin-II-dependent cell-shape changes.  相似文献   

14.
Sphingosine 1-phosphate (S1P) enhances human pulmonary endothelial monolayer integrity via Rac GTPase-dependent formation of a cortical actin ring (Garcia et al. J Clin Invest 108: 689-701, 2001). The mechanisms underlying this response are not well understood but may involve rapid redistribution of focal adhesions (FA) as attachment sites for actin filaments. We evaluate the effects of S1P on the redistribution of paxillin, FA kinase (FAK), and the G protein-coupled receptor kinase-interacting proteins (GITs). S1P induced Rac GTPase activation and cortical actin ring formation at physiological concentrations (0.5 microM), whereas 5 microM S1P caused prominent stress fiber formation and activation of Rho and Rac GTPases. S1P (0.5 microM) stimulated the tyrosine phosphorylation of FAK Y(576), and paxillin was linked to FA disruption and redistribution to the cell periphery. Furthermore, S1P induced a transient association of GIT1 with paxillin and redistribution of the GIT2-paxillin complex to the cell cortical area without affecting GIT2-paxillin association. These results suggest a role of FA rearrangement in S1P-mediated barrier enhancement via Rac- and GIT-mediated processes.  相似文献   

15.
Rho GTPases and their regulators in neuronal functions and development   总被引:2,自引:0,他引:2  
Koh CG 《Neuro-Signals》2006,15(5):228-237
Neurons are specialized cell types which send out processes in order to communicate with other cells, which can be immediate neighbors or whose cell bodies are far distant. Neuronal morphology as in all cells is determined in large part through the regulation of the cytoskeleton. One of the key regulators of the actin cytoskeleton is the Rho family of GTPases. The Rho GTPases function as molecular switches to turn on or off downstream biochemical pathways depending on the stimuli. Their activities and their regulation are controlled by many other proteins such as the guanine nucleotide exchange factors and the GTPase-activating proteins. The activities of some of the Rho family members are reported to be antagonistic to one another. In general, Rac and Cdc42 promote neurite outgrowth while RhoA stimulates retraction. The balance of these opposing activities of the different Rho GTPases is crucial for the morphology and function of the neurons.  相似文献   

16.
The cytoskeletal architecture and adhesion apparatus are tightly controlled during embryogenesis, tissue development, and carcinogenesis. The Rho family GTPases play central roles in regulation of the cytoskeleton and adhesions. Rac1, one of the Rho family GTPases, appears to be activated at the plasma membrane and exert its functions through its effectors. However, where Rac1 and its effectors function at the molecular level remains to be determined. In this study, we examined the molecular organization on the cytoplasmic surface of the substratum-facing plasma membrane, focusing on Rac1 and its effectors, IQGAP1 and Sra-1, by electron microscopy. We employed deep-etch immunoreplica methods to observe the membrane cytoskeletal architecture while determining molecular locations. Beneath the plasma membrane, Rac1 and its effectors showed similar, but distinct, destinations. Rac1 localized on the membrane and associated with the membrane cytoskeleton. IQGAP1 predominantly localized beside actin filaments and occasionally near microtubules together with Rac1. On the other hand, Sra-1 localized at actin filaments, microtubules, and the plasma membrane. Sra-1 colabeled with Rac1 was mainly found at the membrane and actin filaments. These results suggest that IQGAP1 and Sra-1 colocalize with Rac1 at distinct places, including the plasma membrane and cytoskeletal architecture, for their specific functions.  相似文献   

17.
Diaphanous-related formins (DRFs) are actin nucleators that mediate rearrangements of the actin cytoskeleton downstream of specific Rho GTPases. The DRF Formin Homology 2 Domain containing 1 (FHOD1) interacts with the Rac1 GTPase and induces the formation of and associates with bundled actin stress fibers. Here we report that active FHOD1 also coordinates microtubules with these actin stress fibers. Expression of a constitutive active FHOD1 variant in HeLa cells not only resulted in pronounced formation of FHOD1-actin fibers but also caused marked cell elongation and parallel alignment of microtubules without affecting cytokinesis of these cells. The analysis of deletions in the FH1 and FH2 functional regions revealed that the integrity of both domains was strictly required for FHOD1's effects on the cytoskeleton. Dominant-negative approaches demonstrated that filament coordination and cell elongation depended on the activity of the Rho-ROCK cascade, but did not involve Rac or Cdc42 activity. Experimental depolymerization of actin filaments or microtubules revealed that the formation of FHOD1-actin fibers was a prerequisite for the polarization of microtubules. However, only simultaneous disruption of both filament systems reversed the cell elongation induced by activated FHOD1. Thus, sustained cell elongation was a consequence of FHOD1-mediated actin-microtubule coordination. These results suggest filament coordination as a conserved function of mammalian DRFs.  相似文献   

18.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are currently the most common genetic cause of familial late-onset Parkinson disease, which is clinically indistinguishable from idiopathic disease. The most common pathological mutation in LRRK2, G2019S LRRK2, is known to cause neurite retraction. However, molecular mechanisms underlying regulation of neurite length by LRRK2 are unknown. Here, we demonstrate a novel interaction between LRRK2 and the Rho GTPase, Rac1, which plays a critical role in actin cytoskeleton remodeling necessary for the maintenance of neurite morphology. LRRK2 binds strongly to endogenous or expressed Rac1, while showing weak binding to Cdc42 and no binding to RhoA. Co-expression with LRRK2 increases Rac1 activity, as shown by increased binding to the p21-activated kinase, which modulates actin cytoskeletal dynamics. LRRK2 constructs carrying mutations that inactivate the kinase or GTPase activities do not activate Rac1. Interestingly, LRRK2 does not increase levels of membrane-bound Rac1 but dramatically changes the cellular localization of Rac1, causing polarization, which is augmented further when LRRK2 is co-expressed with constitutively active Rac1. Four different disease-related mutations in LRRK2 altered binding to Rac1, with the G2019S and R1441C LRRK2 mutations attenuating Rac1 binding and the Y1699C and I2020T LRRK2 mutations increasing binding. Co-expressing Rac1 in SH-SY5Y cells rescues the G2019S mutant phenotype of neurite retraction. We hypothesize that pathological mutations in LRRK2 attenuates activation of Rac1, causing disassembly of actin filaments, leading to neurite retraction. The interactions between LRRK2 and Rho GTPases provide a novel pathway through which LRRK2 might modulate cellular dynamics and contribute to the pathophysiology of Parkinson disease.  相似文献   

19.
p21-activated protein kinase: a crucial component of morphological signaling?   总被引:16,自引:0,他引:16  
The mechanisms by which Rho family GTPases (Rho, Rac and Cdc42) regulate coordinated changes to the actin cytoskeleton are being elucidated. This review will focus on the current evidence that the p21-activated kinases (PAKs) are involved in regulating some of the diverse cytoskeletal changes induced by Rac and Cdc42. PAKs have been shown to be required for processes including neurite formation and axonal guidance, development of cell polarity and motile responses. Signaling molecules interacting with PAKs that might contribute to the regulation of such processes have recently been identified.  相似文献   

20.
A variety of pathogenic bacteria use type III secretion pathways to translocate virulence proteins into host eukaryotic cells. YopE is an important virulence factor that is translocated into mammalian cells via a plasmid-encoded type III system in Yersinia spp. YopE action in mammalian cells promotes the disruption of actin filaments, cell rounding and blockage of phagocytosis. It was reported recently that two proteins with sequence similarity to YopE, SptP of Salmonella typhimurium and ExoS of Pseudomonas aeruginosa, function as GTPase-activating proteins (GAPs) for Rho GTPases. YopE contains an 'arginine finger' motif that is present in SptP, ExoS and other Rho GAPs and is essential for catalysis by this class of proteins. We show here that a GST-YopE fusion protein stimulated in vitro GTP hydrolysis by the Rho family members Cdc42, RhoA and Rac1, but not by Ras. Conversion of the essential arginine in the arginine finger motif to alanine (R144A) eliminated the in vitro GAP activity of GST-YopE. Infection assays carried out with a Yersinia pseudotuberculosis strain producing YopER144A demonstrated that GAP function was essential for the disruption of actin filaments, cell rounding and inhibition of phagocytosis by YopE in HeLa cells. Furthermore, the GAP function of YopE was important for Y. pseudotuberculosis pathogenesis in a mouse infection assay. Transfection of HeLa cells with a vector that produces a constitutively active form of RhoA (RhoA-V14) prevented the disruption of actin filaments and cell rounding by YopE. Production of an activated form of Rac1 (Rac1-V12), but not RhoA-V14, in HeLa cells interfered with YopE antiphagocytic activity. These results demonstrate that YopE functions as a RhoGAP to downregulate multiple Rho GTPases, leading to the disruption of actin filaments and inhibition of bacterial uptake into host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号