首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Rev regulatory protein of human immunodeficiency virus (HIV) facilitates the nuclear export of unspliced and partially spliced HIV RNAs. Using a Rev:MS2 phage coat protein fusion that could be targeted to bind and activate the Rev-responsive element (RRE) RNA or heterologous MS2 phage operator RNA, we analyzed the role(s) of the arginine-rich RNA binding domain in RNA binding and transactivation. The arginine-rich domain could be functionally replaced by a stretch of nine arginines. However, polyarginine substitutions expanded the RNA binding specificity of the resultant mutant Rev protein. Polyarginine insertions in place of residues 24 to 60 that excised the RNA binding and oligomerization domains of Rev preserved the activation for MS2 RNA, but not for the RRE. A nine-arginine insertion outside of the natural context of the Rev nuclear localization signal domain was incompatible with activation of either RNA target. Insertions of fewer than eight arginines impaired RRE activation. Interrupted lysine clusters and disruption of the arginine stretch with lysine or neutral residues resulted in a similar phenotype. Some of these mutants with a null phenotype for RRE activated the heterologous MS2 RNA target. Under steady-state conditions, mutants that preserved the Rev response for RRE RNA localized to the nuclei; those with poor or no Rev response accumulated mostly in the cytoplasm. Many of the cytoplasmically resident derivatives became nuclear when leptomycin B (LMB) treatment inhibited nuclear export of nuclear export signal-containing proteins. Mutants that had a null activation potential for either RNA target were particularly resistant to LMB treatment. Abbreviated nuclear residence times and differences in RRE binding affinity may have compromised their activation potential for RRE. High-affinity binding to MS2 RNA through the intact coat protein was sufficient to overcome the short nuclear residence times and to facilitate MS2 activation by some derivatives.  相似文献   

2.
Expression of human immunodeficiency virus type 1 structural proteins requires both the viral Rev trans-activator and its cis-acting RNA target sequence, the Rev response element (RRE). The RRE has been mapped to a conserved region of the HIV-1 env gene and is predicted to form a complex, highly stable RNA stem-loop structure. Site-directed mutagenesis was used to define a small subdomain of the RRE, termed stem-loop II, that is essential for biological activity. Gel retardation assays demonstrated that the Rev trans-activator is a sequence-specific RNA binding protein. The RRE stem-loop II subdomain was found to be both necessary and sufficient for the binding of Rev by the RRE. We propose that the HIV-1 Rev trans-activator belongs to a new class of sequence-specific RNA binding proteins characterized by the presence of an arginine-rich binding motif.  相似文献   

3.
4.
E Bhnlein  J Berger    J Hauber 《Journal of virology》1991,65(12):7051-7055
Expression of human immunodeficiency virus type 1 (HIV-1) structural proteins requires the direct interaction of the viral trans-activator protein Rev with its cis-acting RNA sequence (Rev-response element [RRE]). A stretch of 14 amino acid residues of the 116-amino-acid Rev protein is sufficient to impose nucleolar localization onto a heterologous protein. Our results demonstrated that these same amino acid residues confer Rev-specific RRE binding to the heterologous human T-cell leukemia virus type I Rex protein. In addition, our results indicated that amino acids distinct from the nuclear localization signal are important for Rex-specific RRE RNA binding.  相似文献   

5.
The main function attributed to the Rev proteins of immunodeficiency viruses is the shuttling of viral RNAs containing the Rev responsive element (RRE) via the CRM-1 export pathway from the nucleus to the cytoplasm. This restricts expression of structural proteins to the late phase of the lentiviral replication cycle. Using Rev-independent gag-pol expression plasmids of HIV-1 and simian immunodeficiency virus and lentiviral vector constructs, we have observed that HIV-1 and simian immunodeficiency virus Rev enhanced RNA encapsidation 20- to 70-fold, correlating well with the effect of Rev on vector titers. In contrast, cytoplasmic vector RNA levels were only marginally affected by Rev. Binding of Rev to the RRE or to a heterologous RNA element was required for Rev-mediated enhancement of RNA encapsidation. In addition to specific interactions of nucleocapsid with the packaging signal at the 5' end of the genome, the Rev/RRE system provides a second mechanism contributing to preferential encapsidation of genomic lentiviral RNA.  相似文献   

6.
A cis-acting RNA regulatory element, the Rev-responsive element (RRE), has essential roles in replication of lentiviruses, including human immunodeficiency virus (HIV-1) and equine infection anemia virus (EIAV). The RRE binds the viral trans-acting regulatory protein, Rev, to mediate nucleocytoplasmic transport of incompletely spliced mRNAs encoding viral structural genes and genomic RNA. Because of its potential as a clinical target, RRE-Rev interactions have been well studied in HIV-1; however, detailed molecular structures of Rev-RRE complexes in other lentiviruses are still lacking. In this study, we investigate the secondary structure of the EIAV RRE and interrogate regulatory protein-RNA interactions in EIAV Rev-RRE complexes. Computational prediction and detailed chemical probing and footprinting experiments were used to determine the RNA secondary structure of EIAV RRE-1, a 555 nt region that provides RRE function in vivo. Chemical probing experiments confirmed the presence of several predicted loop and stem-loop structures, which are conserved among 140 EIAV sequence variants. Footprinting experiments revealed that Rev binding induces significant structural rearrangement in two conserved domains characterized by stable stem-loop structures. Rev binding region-1 (RBR-1) corresponds to a genetically-defined Rev binding region that overlaps exon 1 of the EIAV rev gene and contains an exonic splicing enhancer (ESE). RBR-2, characterized for the first time in this study, is required for high affinity binding of EIAV Rev to the RRE. RBR-2 contains an RNA structural motif that is also found within the high affinity Rev binding site in HIV-1 (stem-loop IIB), and within or near mapped RRE regions of four additional lentiviruses. The powerful integration of computational and experimental approaches in this study has generated a validated RNA secondary structure for the EIAV RRE and provided provocative evidence that high affinity Rev binding sites of HIV-1 and EIAV share a conserved RNA structural motif. The presence of this motif in phylogenetically divergent lentiviruses suggests that it may play a role in highly conserved interactions that could be targeted in novel anti-lentiviral therapies.  相似文献   

7.
The Rev proteins of the related but distinct human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) display incomplete functional reciprocity. One possible explanation for this observation is that HIV-2 Rev is unable to interact with the HIV-1 Rev-response element (RRE1). However, an analysis of the biological activity of chimeric proteins derived from HIV-1 and HIV-2 Rev reveals that this target specificity does not map to the Rev RNA binding domain but is instead primarily determined by sequences known to mediate Rev multimerization. Both HIV-1 and HIV-2 Rev are shown to bind the RRE1 in vitro with identical RNA sequence specificity. The observation that HIV-2 Rev can inhibit RRE1-dependent HIV-1 Rev function in trans indicates that the direct interaction of HIV-2 Rev with the RRE1 also occurs in vivo. These data suggest that HIV-2 Rev forms a protein-RNA complex with the RRE1 that leads to only minimal Rev activity. It is hypothesized that this low level of Rev function results from the incomplete and/or aberrant multimerization of HIV-2 Rev on this heterologous RNA target sequence.  相似文献   

8.

Background

The lentiviral Rev protein mediates nuclear export of intron-containing viral RNAs that encode structural proteins or serve as the viral genome. Following translation, HIV-1 Rev localizes to the nucleus and binds its cognate sequence, termed the Rev-responsive element (RRE), in incompletely spliced viral RNA. Rev subsequently multimerizes along the viral RNA and associates with the cellular Crm1 export machinery to translocate the RNA-protein complex to the cytoplasm. Equine infectious anemia virus (EIAV) Rev is functionally homologous to HIV-1 Rev, but shares very little sequence similarity and differs in domain organization. EIAV Rev also contains a bipartite RNA binding domain comprising two short arginine-rich motifs (designated ARM-1 and ARM-2) spaced 79 residues apart in the amino acid sequence. To gain insight into the topology of the bipartite RNA binding domain, a computational approach was used to model the tertiary structure of EIAV Rev.

Results

The tertiary structure of EIAV Rev was modeled using several protein structure prediction and model quality assessment servers. Two types of structures were predicted: an elongated structure with an extended central alpha helix, and a globular structure with a central bundle of helices. Assessment of models on the basis of biophysical properties indicated they were of average quality. In almost all models, ARM-1 and ARM-2 were spatially separated by >15 Å, suggesting that they do not form a single RNA binding interface on the monomer. A highly conserved canonical coiled-coil motif was identified in the central region of EIAV Rev, suggesting that an RNA binding interface could be formed through dimerization of Rev and juxtaposition of ARM-1 and ARM-2. In support of this, purified Rev protein migrated as a dimer in Blue native gels, and mutation of a residue predicted to form a key coiled-coil contact disrupted dimerization and abrogated RNA binding. In contrast, mutation of residues outside the predicted coiled-coil interface had no effect on dimerization or RNA binding.

Conclusions

Our results suggest that EIAV Rev binding to the RRE requires dimerization via a coiled-coil motif to juxtapose two RNA binding motifs, ARM-1 and ARM-2.
  相似文献   

9.
10.
Replication of human immunodeficiency virus type 1 requires the functional expression of the virally encoded Rev protein. The binding of this nuclear trans activator to its viral target sequence, the Rev-response element, induces the cytoplasmic expression of unspliced viral mRNAs. Mutation of the activation domain of Rev generates inactive proteins with normal RNA binding capabilities that inhibit wild-type Rev function in a trans-dominant manner. Here, we report that the activation domain comprises a minimum of nine amino acids, four of which are critically spaced leucines. The preservation of this essential sequence in other primate and nonprimate lentivirus Rev proteins indicates that this leucine-rich motif has been highly conserved during evolution. This conclusion, taken together with the observed permissiveness of a variety of eukaryotic cell types for Rev function, suggests that the target for the activation domain of Rev is likely to be a highly conserved cellular protein(s) intrinsic to nuclear mRNA transport or splicing.  相似文献   

11.
The binding of human immunodeficiency virus Rev protein via its arginine‐rich motif (ARM) to an internal loop in the Rev‐response element region IIB (RRE IIB) is necessary for viral replication. Many variant RNAs and ARMs that bind Rev and RRE IIB have been found. Despite the essential role of Rev asparagine 40 in recognition, the Rev ARM double‐mutant R35G‐N40V functions well in a Rev–RRE IIB reporter assay, indicating R35G‐N40V uses a distinct recognition strategy. To examine how RRE IIB may evolve specificity to wild‐type Rev ARM and R35G‐N40V, 10 RRE IIB libraries, each completely randomized in overlapping regions, were screened with wild‐type Rev ARM and R35G‐N40V using a reporter system based on bacteriophage λ N antitermination. Consistent with previous studies, a core element of RRE IIB did not vary, and substitutions occurred at conserved residues only in the presence of other substitutions. Notably, the groove‐widening, non‐canonical base‐pair G48:G71 was mutable to U48:G71 without strong loss of binding to wild‐type Rev ARM, suggesting U48:G71 performs the same role by adopting the nearly isosteric, reverse wobble base pair. Originating from RRE IIB, as few as one or two substitutions are sufficient to confer specificity to wild‐type Rev or Rev R35G‐N40. The diversity of RRE IIB mutants that maintain binding to wild‐type Rev ARM and R35G‐N40V supports neutral theories of evolution and illustrates paths by which viral RNA–protein interactions can evolve new specificities. Rev–RRE offers an excellent model with which to study the fine structure of how specificity evolves. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The Rev responsive element (RRE), a part of unspliced human immunodeficiency virus (HIV) RNA, serves a crucial role in the production of infectious HIV virions. The viral protein Rev binds to RRE and facilitates transport of mRNA to the cytoplasm. Inhibition of the Rev-RRE interaction disrupts the viral life cycle. Using a phage display protocol, dual zinc finger proteins (ZNFs) were generated that bind specifically to RREIIB at the high affinity Rev binding site. These proteins were further shortened and simplified, and they still retained their RNA binding affinity. The solution structures of ZNF29 and a mutant, ZNF29G29R, have been determined by nuclear magnetic resonance (NMR) spectroscopy. Both proteins form C(2)H(2)-type zinc fingers with essentially identical structures. RNA protein interactions were evaluated quantitatively by isothermal titration calorimetry, which revealed dissociation constants (K(d)'s) in the nanomolar range. The interaction with the RNA is dependent upon the zinc finger structure; in the presence of EDTA, RNA binding is abolished. For both proteins, RNA binding is mediated by the alpha-helical portion of the zinc fingers and target the bulge region of RREIIB-TR. However, ZNF29G29R exhibits significantly stronger binding to the RNA target than ZNF29; this illustrates that the binding of the zinc finger scaffold is amenable to further improvements.  相似文献   

13.
14.
The Rev protein of human immunodeficiency virus type 1 (HIV-1) differentially transactivates the expression of viral structural proteins by allowing the accumulation of unspliced and singly spliced viral mRNA in the cytoplasm. The cis-acting RNA target sequence for the Rev protein, termed the Rev response element (RRE), is present in the env gene and is predicted to form a highly ordered RNA secondary structure. Recent data indicate that Rev directly binds to RRE and, further, that this binding can be mapped to a 90-nucleotide subfragment at the 5' end of RRE. We now report that RRE also binds specifically and predominantly to a nuclear factor of approximately 56 kD. Mapping of the binding site reveals that the same subfragment that binds Rev also binds this nuclear factor. We designate this protein as NFRRE for nuclear factor, RRE binding. Rev and NFRRE appear to bind simultaneously to RRE. NFRRE is widely distributed in various mammalian cells. We speculate that this factor plays an important role in Rev-mediated transactivation and is likely to be involved in the processing or transport of cellular mRNA.  相似文献   

15.
Summary The Rev Response Element (RRE) RNA-Rev protein interaction is important for regulation of gene expression in the human immunodeficiency virus. A model system for this interaction, which includes stem IIB of the RRE RNA and an arginine-rich peptide from the RNA-binding domain of Rev, was studied using multidimensional heteronuclear NMR. Assignment of the RNA when bound to the peptide was obtained from NMR experiments utilizing uniformly and specifically 13C-labeled RNA. Isotopic filtering experiments on the specifically labeled RNA enabled unambiguous assignment of unusual nonsequential NOE patterns present in the internal loop of the RRE. A three-dimensional model of the RNA in the complex was obtained using restrained molecular dynamics calculations. The internal loop contains two purine-purine base pairs, which are stacked to form one continuous helix flanked by two A-form regions. The formation of a G-G base pair in the internal loop requires an unusual structure of the phosphate backbone. This structural feature is consistent with mutational data as being important for the binding of Rev to the RRE. The G-G base pair may play an important role in opening the normally narrow major groove of A-form RNA to permit binding of the Rev basic domain.  相似文献   

16.
17.
18.
19.
20.
The interaction of the human immunodeficiency virus type 1 (HIV-1) Rev protein with a structured region in env mRNA (the Rev-responsive element [RRE]) mediates the export of structural mRNAs from the nucleus to the cytoplasm. We demonstrated that unlike HIV-1 Rev, which functions with both the HIV-1 and HIV-2 RREs, HIV-2 Rev functions only with the HIV-2 RRE. Rev-RRE binding studies suggested that the lack of nonreciprocal complementation stems from the inability of HIV-2 Rev to interact with HIV-1 RRE RNA. Maintenance of RNA secondary structure, rather than the primary nucleotide sequence, appeared to be the major determinant for interaction of both HIV-1 and HIV-2 Rev with the HIV-2 RRE. Moreover, the binding domain of the HIV-2 RRE recognized by HIV-1 Rev was dissimilar to the binding domain of the HIV-1 RRE, in terms of both secondary structure and primary nucleotide sequence. Our results support the hypothesis that function of HIV Rev proteins and possibly the functionally similar Rex proteins encoded by the human T-cell leukemia viruses (HTLVs) HTLV-I and HTLV-II is controlled by the presence of RNA secondary structure generated within the RRE RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号