首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous electron microscope freeze-fracture and tracer studies have revealed that intercellular junctions in the retinal pigment epithelium (RPE) of Royal College of Surgeons (RCS) rats with inherited retinal dystrophy [5] break down between three and six postnatal weeks [6, 7]. In this study quantitative computer techniques were used to analyze the freeze-fracture changes in the dystrophic RPE. The following parameters were measured: length of tight junctional strands/micron2; number of tight junctional strand anastomoses/micron2; number of gap junctional aggregates/micron2; area of gap junctional aggregates/micron2; and density of background intramembrane particles/micron2. At three postnatal weeks, the dystrophic junctional complex membrane is similar to normal, but at 10 weeks and later there are dramatic decreases in tight junctional strand length/micron2 and number of anastomoses/micron2, as well as in the number/micron2 and area of gap junctions/micron2, while the density of background particles/micron2 is dramatically increased. Correlational analysis revealed that changes in gap and tight junctions were significantly related to each other and to the increase in background particle density. The diameter of background particles within the normal and post-breakdown dystrophic junctions was measured in order to see whether the dispersal of gap and tight junctional particles (8-10 nm) into the surrounding membrane contributes to the increased particle density. These measures showed that background particles in all size ranges were more numerous in the dystrophic RPE, but that the largest increase was in the smallest diameter particles (6-7 nm). Thus, while gap and tight junctional sized particles contribute to the increase, particles from other sources may also be involved. Particle density of apical and basal membranes in the normal and in the 10 week and older dystrophic RPE was analyzed to study the effects of tight junctional breakdown on the distribution of intramembrane particles. These measures showed that particle density was greater basally than apically in the normal RPE and that particle density in both membranes decreased slightly in the dystrophic RPE, but that their ratio remained unchanged. It has been shown previously that even a single intact tight junctional strand is sufficient to maintain differences in particle density between apical and basal surfaces [14, 15] and in the majority of abnormal dystrophic junctional complexes at least one tight junctional strand remains intact.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
《The Journal of cell biology》1988,107(6):2401-2408
The relationship of tight junction permeability to junction structure and composition was examined using two strains of Madin-Darby canine kidney (MDCK) cells (I and II) which differ greater than 30-fold in transepithelial resistance. This parameter is largely determined by paracellular, and hence junctional, permeability under most conditions. When these two strains of cells were grown on permeable filter supports, they formed monolayers with equivalent linear amounts of junction/area of monolayer. Ultrastructural analysis of these monolayers by thin section EM revealed no differences in overall cellular morphology or in tight junction organization. Morphometric analysis of freeze-fractured preparations indicated that the tight junctions of these two cell strains were similar in both number and density of junctional fibrils. Prediction of transepithelial resistance for the two strains from this freeze-fracture data and a published structure-function formulation (Claude, P. 1978, J. Memb. Biol. 39:219- 232) yielded values (I = 26.5 omega/cm2, II = 35.7 omega/cm2) that were significantly lower than those observed (I = 2,500-5,000 omega/cm2, II = 50-70 omega/cm2). Consistent with these structural studies, a comparison of the distribution and cellular content of ZO-1, a polypeptide localized exclusively to the tight junction, revealed no significant differences in either the localization of ZO-1 or the amount of ZO-1 per micron of junction (I = 1,415 +/- 101 molecules/micron, II = 1,514 +/- 215 molecules/micron).  相似文献   

3.
Summary This paper reports the effect of reversing the osmotic environment between luminal and serosal compartments of a toad urinary bladder on the polarity of assembly of tight junction strands. Toad bladders were filled with Ringer's solution (220 mOsm) and were immersed in distilled water at room temperature or at 37°C. Within two minutes, new tight junction strands are assembled. The new tight junctional strands unite the basal pole of epithelial cells with the apical side of basal cells. Physiological studies show that oxytocin, a synthetic analog of antidiuretic hormone, is still capable of inducing increases in water transport in epithelia which were osmotically reversed. This capacity decreases significantly for longer periods of osmotic reversal. Osmotic reversal does not alter the original polarity of epithelial cells: 1) the apical tight junction belt, at the apical pole, is not displaced; 2) the freeze-fracture morphology typical of apical plasma membrane (particle-rich E faces; particle-poor P faces) is not altered; 3) oxytocin and cyclic AMP induce aggregates which are observed only at the apical plasma membrane. Massive assembly of junctional elements occurs even in epithelia preincubated in the presence of cycloheximide (an inhibitor of protein synthesis) or of cytoskeleton perturbers. Our experiments show that the polarity of assembly of tight junction strands depends on the vectorial orientation of the osmotic environment of the epithelium.  相似文献   

4.
The role of tight junctions (zonula occludens) in the formation of apical plasma membrane (PM) domains was investigated in the embryonic rat pancreas. In the present study, lectin-rhodamine (WGA-TRITC and RCAII-TRITC) and lectin-gold (WGA-Au and RCAII-Au) conjugates were used to monitor apical PM domain formation and freeze-fracture analysis was used to monitor tight junction formation in the pancreatic epithelium of embryonic, neonatal, and adult rats. Fluorescent and TEM analysis of WGA and RCAII binding indicated that an apical PM domain is formed as early as Day 13 of gestation in the pancreatic epithelium. While apical WGA binding remained into adult life, RCAII binding was lost by 1 day after birth. In contrast, tight junctions were not observed until Day 14 of gestation. At this time, tight junctions were found to be incomplete in formation and typically consisted of linear arrays of IMPs or discontinuous arrays of sealing strands (focal adherens). Continuous tight junctions were not completely formed until Day 15 of gestation. Continued development of tight junctions during gestation was characterized by (1) an increase in the number of sealing strands and (2) a more parallel arrangement of sealing strands within each junctional complex. By 8 weeks after birth, tight junctions were more loosely organized and contained fewer sealing strands as compared to that observed in the fetus. These results suggest that lateral diffusion of apical PM glycoconjugates may be restricted even in the absence of complete tight junctional complexes during development of the rat pancreas.  相似文献   

5.
The tight junctions of the choroid plexus epithelium of rats were studied by freeze-fracture. In glutaraldehyde-fixed material, the junctions exhibited rows of aligned particles and short bars on P-faces, the E-faces showing grooves bearing relatively many particles. A particulate nature of the junctional strands could be established by using unfixed material. The mean values of junctional strands from the lateral, third, and fourth ventricles of Lewis rats were 7.5 +/- 2.6, 7.4 +/- 2.2, and 7.5 +/- 2.4; and of Sprague-Dawley rats 7.7 +/- 3.4, 7.4 +/- 2.3, and 7.3 +/- 1.6. Examination of complementary replicas (of fixed tissue) showed that discomtinuities are present in the junctional strands: 42.2 +/- 4.6% of the length of measured P-face ridges were discontinuities, and the total amount of complementary particles in E-face grooves constituted 17.8 +/- 4.4% of the total length of the grooves, thus approximately 25% of the junctional strands can be considered to be discontinuous. The average width of the discontinuities, when corrected for complementary particles in E-face grooves, was 7.7 +/- 4.5 nm. In control experiments with a "tighter" tight junction (small intestine), complementary replicas revealed that the junctional fibrils are rather continuous and that the very few particles in E-face grooves mostly filled out discontinuities in the P-face ridges. Approximately 5% of the strands were found to be discontinuous. These data support the notion that the presence of pores in the junctional strands of the choroid plexus epithelium may explain the high transepithelial conductance in a "leaky" epithelium having a high number of junctional strands. However, loss of junctional material during fracturing is also considered as an alternative explanation of the present results.  相似文献   

6.
Epithelial transport and barrier function in occludin-deficient mice   总被引:3,自引:0,他引:3  
BACKGROUND AND AIMS: This study aimed at functional characterization of the tight junction protein occludin using the occludin-deficient mouse model. METHODS: Epithelial transport and barrier functions were characterized in Ussing chambers. Impedance analysis revealed the ionic permeability of the epithelium (Re, epithelial resistance). Conductance scanning differentiated transcellular (Gc) and tight junctional conductance (Gtj). The pH-stat technique quantified gastric acid secretion. RESULTS: In occludin+/+ mice, Re was 23+/-5 Omega cm2 in jejunum, 66+/-5 Omega cm2 in distal colon and 33+/-6 Omega cm2 in gastric corpus and was not altered in heterozygotic occludin+/- or homozygotic occludin-/- mice. Additionally, [3H]mannitol fluxes were unaltered. In the control colon, Gc and Gtj were 7.6+/-1.0 and 0.3+/-0.1 mS/cm2 and not different in occludin deficiency. Epithelial resistance after mechanical perturbation or EGTA exposition (low calcium switch) was not more affected in occludin-/- mice than in control. Barrier function was measured in the urinary bladder, a tight epithelium, and in the stomach. Control Rt was 5.8+/-0.8 kOmega cm2 in urinary bladder and 33+/-6 Omega cm2 in stomach and not altered in occludin-/- mice. In gastric corpus mucosa, the glandular structure exhibited a complete loss of parietal cells and mucus cell hyperplasia, as a result of which acid secretion was virtually abolished in occludin-/- mice. CONCLUSION: Epithelial barrier characterization in occludin-deficiency points against an essential barrier function of occludin within the tight junction strands or to a substitutional redundancy of single tight junction molecules like occludin. A dramatic change in gastric morphology and secretory function indicates that occludin is involved in gastric epithelial differentiation.  相似文献   

7.
Ectoplasmic specializations are actin filament-endoplasmic reticulum complexes that occur in Sertoli cells at sites of intercellular attachment. At sites between inter-Sertoli cell attachments, near the base of the cells, the sites are also related to tight junctions. We studied the characteristics of ectoplasmic specializations from six species using conventional views in which thin sections were perpendicular to the plane of the membranes, we used rare views in which the sections were in the plane of the membrane (en face views), and we also used the freeze-fracture technique. Tissues postfixed by osmium ferrocyanide showed junctional strands (fusion points between membranes) and actin bundles, actin sheets, or both, which could be visualized simultaneously. En face views demonstrated that the majority of tight junctional strands ran parallel to actin filament bundles. Usually, two tight junctional strands were associated with each actin filament bundle. Parallel tight junctions were occasionally extremely close together ( approximately 12 nm apart). Tight junctional strands were sometimes present without an apparent association with organized actin bundles or they were tangential to actin bundles. En face views showed that gap junctions were commonly observed intercalated with tight junction strands. The results taken together suggest a relationship of organized actin with tight junction complexes. However, the occasional examples of tight junction complexes being not perfectly aligned with actin filament bundles suggest that a precise and rigidly organized actin-tight junction relationship described above is not absolutely mandatory for the presence or maintenance of tight junctions. Species variations in tight junction organization are also presented.  相似文献   

8.
The apical junctional complex is composed of various cell adhesion molecules and cytoplasmic plaque proteins. Using a monoclonal antibody that recognizes a chicken 155-kDa cytoplasmic antigen (p155) localizing at the apical junctional complex, we have cloned a cDNA of its mouse homologue. The full-length cDNA of mouse p155 encoded a 148-kDa polypeptide containing a coiled-coil domain with sequence similarity to cingulin, a tight junction (TJ)-associated plaque protein. We designated this protein JACOP (junction-associated coiled-coil protein). Immunofluorescence staining showed that JACOP was concentrated in the junctional complex in various types of epithelial and endothelial cells. Furthermore, in the liver and kidney, JACOP was also distributed along non-junctional actin filaments. Upon immunoelectron microscopy, JACOP was found to be localized to the undercoat of TJs in the liver, but in some tissues, its distribution was not restricted to TJs but extended to the area of adherens junctions. Overexpression studies have revealed that JACOP was recruited to the junctional complex in epithelial cells and to cell-cell contacts and stress fibers in fibroblasts. These findings suggest that JACOP is involved in anchoring the apical junctional complex, especially TJs, to actin-based cytoskeletons.  相似文献   

9.
A6 cells, a kidney derived epithelial cell line, when cultured either on a collagen-coated substrate or on polycarbonate substrate without collagen form confluent monolayers that are similar in cell density and overall morphology. However, the transepithelial electrical resistance (TER) of monolayers grown on the collagen-coated substrate is ninefold higher than that of monolayers grown without collagen. A comparative freeze-fracture study showed that this large difference in TER is not related to the length or number of tight junction strands but to differences in the specific conductance of individual strands. This conductance was obtained considering the TER, the linear junctional density and the mean number of tight junction strands. We estimated the specific linear conductance of the tight junction strands to be 2.56 × 10−7 S/cm for cells grown on collagen and 30.3 × 10−7 S/cm for the cells grown without collagen. We also examined changes in distribution and phosphorylation states of the zonula occludens associated protein, ZO-1, during monolayer formation. Immunocytochemistry reveals that the distribution of ZO-1 follows a similar time course and pattern independent of the presence or absence of collagen. While the amount of ZO-1 expression is identical in cells grown on both substrates, this protein is phosphorylated to a greater extent during the initial stages of confluence in cells cultured on collagen. We suggest that the phosphorylation levels of ZO-1 in A6 cells at the early stages of monolayer formation may determine the final molecular structure and specific conductance of the tight junctions strands. Received: 18 September 1996/Revised: 17 June 1997  相似文献   

10.
Summary Freeze-etched preparations of the ventricular surfaces of ependymal cells clearly reveal the presence of pinocytotic vesicles opening into the third ventricle and large vacuoles formed by broad cell projections. The density of the vesicular openings is approximately 20 per m2. The ependymal cells in the median eminence of the frog are adjoined by tight junctions comprised of five to eight interconnected junctional strands, whereas near the median eminence in the mouse only one to two such strands form the tight junction of the ependymal cells. Gap junctions between the adjacent ependymal cells are detected near the median eminence in the mouse but not in the frog.This study was supported in part by a grant from the Japanese Ministry of Education (No. 067670)  相似文献   

11.
Summary Protamine is a naturally occurring basic protein (pI; 9.7 to 12.0). We have recently reported that protamine dissolved in the mucosal bath (2 to 20 m), induces about a twofold increase in transepithelial resistance inNecturus gallbladder within 10 min. Conductance decreased concomitantly with cation selectivity.In this leaky epithelium, where >90% of an applied current passes between cells, an increment in resistance of this magnitude suggests a paracellular actiona priori. To confirm this, ionic conductance across the apical cell membrane was studied with microelectrodes. Protamine increased transepithelial resistance without changing apical cell membrane voltage or fractional membrane resistance. Variation in extracellular K concentration (6 to 50mm) caused changes in apical membrane voltage not different from control.To determine if protamine-induced resistance changes were associated with structural alteration of tight junctions, gallbladders were fixedin situ at peak response and analyzed by freeze-fracture electron microscopy. According to a morphometrical analysis, the tight junctional intramembranous domain expands vertically due to incorporation of new strands (fibrils) into the main compact fibrillar meshwork.Since morphologic changes are complete within 10 min, strands are probably recycled into and out of the tight junctional membrane domain possibly by the cytoskeleton either from cytoplasmic vesicles or from intramembranous precursors. Regulation of tight junctional permeability by protamine and other perturbations may constitute a common mechanism by which leaky epithelia regulate transport, and protamine, in concentrations employed in this study, seems reasonably specific for the tight junction.  相似文献   

12.
The peritoneal mesothelium of mouse embryos (12 to 18 day of gestation) was studied by freeze-fracture and in sections in order to reveal the initial formation of the tight junctions. Freeze-fracture observations showed three types of tight junctions. Type I consists of belt-like meshworks of elevations on the P face and of shallow grooves on the E face. No tight junctional particle can be seen either on the elevations or in the grooves. Type II shows rows of discontinuous particles on the elevations on the P face. Type III consists of strands forming ridges on the P face. On the E face, the grooves of Type II and III appear to be narrower and sharper than those of Type I. Quantitatively, Type I junctions are most numerous during the early stages (day 12-13) of embryonic development, while Type III junctions become more common in the later stages, and are the only type seen by day 18. Observations on sections, however, fail to distinguish between the three types. The results suggest that an initial sign of tight junction formation is close apposition of the two cell membranes in the junctional domain, without tight junctional particles. Later, the particles appear to be incorporated in the tight junctions and the strands form by fusion of the particles.  相似文献   

13.
《The Journal of cell biology》1989,109(6):2817-2832
Studies of the developing trophectoderm in the mouse embryo have shown that extensive cellular remodeling occurs during epithelial formation. In this investigation, confocal immunofluorescence microscopy is used to examine the three-dimensional changes in cellular architecture that take place during the polarization of a terminally differentiated epithelial cell line. Madin-Darby canine kidney cells were plated at a low density on permeable filter supports. Antibodies that specifically recognize components of the tight junction, adherens junction, microtubules, centrosomes, and the Golgi complex were used to study the spatial remodeling of the cytoarchitecture during the formation of the polarized cell layer. The immunofluorescence data were correlated with establishment of functional tight junctions as measured by transepithelial resistance and back-exchange of the cell surface, labeled with metabolites of the fluorescent lipid analogue N-(7-[4- nitrobenzo-2-oxa-1,3-diazole]) aminocaproyl sphingosine. 1 d after plating, single cells had microtubules, radiating from a broad region, that contained the centrosomes and the Golgi complex. 2 d after plating, the cells had grown to confluence and had formed functional tight junctions close to the substratum. The centrioles had split and no longer organized the microtubules which were running above and below the nucleus. The Golgi complex had spread around the nucleus. By the fifth day after plating, the final polarized state had been achieved. The junctional complex had moved greater than 10 microns upward from its basal location. The centrioles were together below the apical membrane, and the Golgi complex formed a ribbon-like convoluted structure located in the apical region above the nucleus. The microtubules were organized in an apical web and in longitudinal microtubule bundles in the apical-basal axis of the columnar cell. The longitudinal microtubules were arranged with their minus ends spread over the apical region of the cell and their plus ends toward the basal region. These findings show that there is an extensive remodeling of epithelial cytoarchitecture after formation of cell-cell contacts. Reorganization of the microtubule network results in functional polarization of the cytoplasm.  相似文献   

14.
Summary The junctional complexes of cells in the outer arachnoid layer overlying the cerebral cortex of 2-week-old rats were examined with freeze-fracture electron microscopy up to 60 min after transcranial cold injury to the dorsal surface of the brain. Within 30 min after injury, areas of gap and tight junctions with morphological features characteristic of junction formation and/or junction disruption were found scattered among normal junctional complexes in some arachnoid cells. Within 60 min after injury, tight junctions with features typical of less leaky zonulae occludentes were present in all arachnoid cells examined. These morphological features include increases in the number of tight junctional strands and the number of strand-to-strand anatomoses. Gap junctions were interspersed among the tight junctional strands, and many were completely encircled by the strands. The increase in the number and complexity of the tight junctional strands in response to brain injury may be the morphological basis for the maintenance of the cerebrospinal fluid-blood dural barrier.This study was supported by the National Institute of Neurological and Communicative Disorders and Stroke Grant NS20590. The opinions or assertions contained herein are the private ones of the authors and are not to be construed as official or reflecting the views of the DoD or the USUHS. The experiments reported herein were conducted according to the principles set forth in the Guide for Care and Use of Laboratory Animals, Institute of Laboratory Animal Resources, National Research Council, DHEW Pub. No. (NIH) 78-23  相似文献   

15.
The structural features of the chloride-secreting opercular epithelium of seawater-adapted killifish (Fundulus heteroclitus) were examined by thin-section and freeze-fracture electron microscopy, with particular emphasis on the morphological appearance of occluding junctions. This epithelium is a flat sheet consisting predominantly of groups of mitochondriarich chloride cells with their apices associated to form apical crypts. These multicellular groups are interspersed in an otherwise continuous pavement cell epithelial lining. The epithelium may be mounted in Ussing-type chambers, which allow ready access to mucosal and serosal solutions and measurement of electrocal properties. The mean short-circuit current, potential difference (mucosal-side negative), and DC resistance for 19 opercular epithelia were, respectively, 120.0 +/- 18.2 microA/cm2, 12.3 +/- 1.7 mV, and 132.5 +/- 26.4 omega cm2. Short-circuit current, a direct measure of Cl- transport, was inhibited by ouabain (5 micron) when introduced on the serosal side, but not when applied to the mucosal side alone. Autoradiographic analysis of [3H]-ouabain-binding sites demonstrated that Na+,K+-ATPase was localized exclusively to basolateral membranes of chloride cells; pavement cells were unlabeled. Occluding junctions between adjacent chloride cells were remarkably shallow (20-25 nm), consisting of two parallel and juxtaposed junctional strands. Junctional interactions between pavement cells or between pavement cells and chloride cells were considerably more elaborate, extending 0.3-0.5 micron in depth and consisting of five or more interlocking junctional strands. Chloride cells at the lateral margins of crypts make simple junctional contacts with neighboring chloride cells and extensive junctions with contiguous pavement cells. Accordingly, in this heterogeneous epithelium, only junctions between Na+,K+-ATPase- rich chloride cells are shallow. Apical crypts may serve, therefore, as focal areas of high cation conductivity across the junctional route. This view is consistent with the electrical data showing that transmural resistance across the opercular eptihelium is low, and with recent studies demonstrating that transepithelial Na+ fluxes are passive. The simplicity of these junctions parallels that described recently for secretory cells of avian salt gland (Riddle and Ernst, 1979, J. Membr. Biol., 45:21-35) and elasmobranch rectal gland (Ernst et al., 1979, J. Cell Biol., 83:(2, Pt. 2):83 a[Abstr.]) and lends morphological support to the concept that paracellular ion permeation plays a central role in ouabain-sensitive transepithelial NaCl secretion.  相似文献   

16.
Summary Tight junctions were found in the apical junctional complex of the adult rabbit subcommissural organ (SCO) in addition to zonulae adhaerentes and gap junctions of typical ependymal cells. Ventricular perfusion of ruthenium red before fixation was found to give excellent results for distinguishing between gap and tight junctions at the ependymal surface. The implication of tight junctions as a mechanical means of sealing off the SCO area from the cerebrospinal fluid and the use of ruthenium red as a tracer substance are discussed.This work was supported by grants from Statens almindelige Videnskabsfond, Copenhagen.  相似文献   

17.
Gap junctions and zonulae occludentes of hepatocytes were examined in thin sections and freeze-fracture replicas from livers of larval and juvenile adult lampreys and during the phase of metamorphosis when bile ducts and bile canaliculi disappear (biliary atresia). Larvae possess zonulae occludentes at the canaliculi which are composed of one to five (mean = 2.81) junctional strands that provide a bile-blood barrier. Morphometry demonstrates that during biliary atresia the decreases in number of junctional strands and apico-basal depth of the zonulae occludentes are accompanied by an increase in the frequency of gaps or interruptions in the strands and in a breakdown of the bile-blood barrier. The zonulae occludentes completely disappear during metamorphosis and are not found in the adult liver. Gap junctions of the larval liver occupy 1% of the surface of the plasma membrane and have a mean area of 0.167 micron 2 but, following an initial decline in these parameters during early biliary atresia, they rise sharply in later stages of metamorphosis and in adults are 3.2% and 0.502 micron 2, respectively. The events of alteration in junctional morphology during lamprey biliary atresia is in many ways comparable to the changes in gap junctions and zonulae occludentes during experimental and pathological intra- and extrahepatic cholestasis in mammals.  相似文献   

18.
Using freeze-fracture techniques, tight junctional networks were observed in the human normal bronchial epithelium. They were morphologically classified into three types: type I was a loosely interconnected, most complicated network consisting of 7-11 roughly parallel wavy strands and situated between ciliated cells; type II was a randomly anastomosing, simple network made up of 2-4 strands and present between goblet cells; type III was an irregularly anastomosing network composed of 4-7 strands and located between a ciliated cell and a goblet cell. Type III junctions, when a goblet cell was strongly bulged, were located on the swollen ridge, the upper surface of which was separated by a deep groove from the bulged apical surface, around the lateral surface of the cell at the level of the luminal surface. The possible relation between the orientation of strands of these networks and extra- or intracellular stress was discussed.  相似文献   

19.
The endothelial cell junction in guinea-pig placental capillaries consists of a continuous ribbon desmosome (zonula adherens) within which lies a particulate tight junction consisting of between one and five anastomosing strands. The intercellular space at these tight junctions is narrowed and is subdivided by junctional bars which are probably continuous with the intramembrane particle rows seen in freeze-fracture replicas of the junctions. Perfusion with lanthanum salts shows the gaps between the junctional bars to be lanthanum-filled and the entire junction to be lanthanum permeable. The estimated size of the spaces between the junctional bars is consistent with the junctional pore size indicated by previous ultrastructural tracer studies. The wider lateral intercellular space of the ribbon desmosome is spanned by more widely spaced "linkers" which may act as a coarser three-dimensional filter in series with size-limiting pores between the tight junctional bars.  相似文献   

20.
A tight junction-enriched membrane fraction has been used as immunogen to generate a monoclonal antiserum specific for this intercellular junction. Hybridomas were screened for their ability to both react on an immunoblot and localize to the junctional complex region on frozen sections of unfixed mouse liver. A stable hybridoma line has been isolated that secretes an antibody (R26.4C) that localizes in thin section images of isolated mouse liver plasma membranes to the points of membrane contact at the tight junction. This antibody recognizes a polypeptide of approximately 225,000 D, detectable in whole liver homogenates as well as in the tight junction-enriched membrane fraction. R26.4C localizes to the junctional complex region of a number of other epithelia, including colon, kidney, and testis, and to arterial endothelium, as assayed by immunofluorescent staining of cryostat sections of whole tissue. This antibody also stains the junctional complex region in confluent monolayers of the Madin-Darby canine kidney epithelial cell line. Immunoblot analysis of Madin-Darby canine kidney cells demonstrates the presence of a polypeptide similar in molecular weight to that detected in liver, suggesting that this protein is potentially a ubiquitous component of all mammalian tight junctions. The 225-kD tight junction-associated polypeptide is termed "ZO-1."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号