首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
It is well known that parts of earthworms can survive if they are cut off. Our aim was to link the regeneration capacity of an earthworm, Eisenia fetida (Oligochaeta, Annelida) with the site of the amputation, so we amputated earthworms at different body segment locations along the length of the body to examine the different survival rates and regeneration lengths of the anterior, posterior, and medial sections.
The greatest survival rates occurred for earthworms with the most body segments remaining after amputation. The anterior regeneration lengths were of two types. The lengths of regeneration of amputated from body segment 6/7 to further down the body posteriorly increased gradually (Type LI). However, the regeneration lengths of earthworm which were amputated behind the 23rd segment, with less than a quarter of the total segments remaining, did not increase until the blastema and tail bud formation (Type LII). These treatments were not completely regeneration. There were significant differences in both survival rates and lengths of regeneration lengths between immature earthworms and clitellate adult earthworms during the early stages of regeneration, but not at later stages of regeneration. The immature earthworms had a greater regeneration potential than clitellate adults amputated at the same segment. The survival rates of earthworms were correlated significantly with the number of body segments remaining after amputation, but not with the position of the amputation. The relationships between the survival rates and the numbers of remaining segments could be described by linear regressions. The anterior regeneration lengths were correlated with the position of the amputation, but not with the number of remaining segments; the posterior regeneration lengths, were not correlated with the number of segments remaining nor the amputation position. The anterior regeneration length was not related to the survival rates for all earthworm amputations after 30 days but was related in this way after 60 days.  相似文献   

2.
It is well known that parts of earthworms can survive if they are cut off. Our aim was to link the regeneration capacity of an earthworm, Eisenia fetida (Oligochaeta, Annelida) with the site of the amputation, so we amputated earthworms at different body segment locations along the length of the body to examine the different survival rates and regeneration lengths of the anterior, posterior, and medial sections.
The greatest survival rates occurred for earthworms with the most body segments remaining after amputation. The anterior regeneration lengths were of two types. The lengths of regeneration of amputated from body segment 6/7 to further down the body posteriorly increased gradually (Type LI). However, the regeneration lengths of earthworm which were amputated behind the 23rd segment, with less than a quarter of the total segments remaining, did not increase until the blastema and tail bud formation (Type LII). These treatments were not completely regeneration. There were significant differences in both survival rates and lengths of regeneration lengths between immature earthworms and clitellate adult earthworms during the early stages of regeneration, but not at later stages of regeneration. The immature earthworms had a greater regeneration potential than clitellate adults amputated at the same segment. The survival rates of earthworms were correlated significantly with the number of body segments remaining after amputation, but not with the position of the amputation. The relationships between the survival rates and the numbers of remaining segments could be described by linear regressions. The anterior regeneration lengths were correlated with the position of the amputation, but not with the number of remaining segments; the posterior regeneration lengths, were not correlated with the number of segments remaining nor the amputation position. The anterior regeneration length was not related to the survival rates for all earthworm amputations after 30 days but was related in this way after 60 days.  相似文献   

3.
Tail biopsies are routinely taken to genotype genetically modified mice. However, the effect of this procedure on the wellbeing of the animals has rarely been investigated. Thus, it has not yet been clearly demonstrated to what extent the mice suffer from tail biopsy (TB) and for how long. The aim of our study was to assess the impact of a single TB on the physiological and behavioural parameters of adult mice and to investigate whether or not anaesthesia can be beneficial. Body weight (BW) curves, daily food/water consumption and telemetric measurements of heart rate, body core temperature, and locomotor activity were recorded for three days following TB, both with and without anaesthesia with methoxyflurane (MOF) or diethylether (ether). Additionally, the impact of anaesthesia alone was characterized. TB without anaesthesia induced an increase in heart rate and locomotor activity for 1 h. Body core temperature was elevated for 2 h. In contrast, heart rate was increased for up to 4 h after anaesthesia. Body core temperature remained altered for up to 20 h after exposure to ether and for 44 h after exposure to MOF. BW was slightly reduced after MOF. Cases of death occurred exclusively under ether at a rate of 7%. Our results indicate a short-lived impact of a TB, whereas anaesthesia with either MOF or ether induced remarkable alterations in the parameters analysed. In conclusion, these types of anaesthesia did not improve mouse wellbeing following tail biopsy.  相似文献   

4.
The caudal myofibers of Plethodon cinereus do not appear to participate directly in epimorphic tail regeneration following either autotomy or surgical amputation of the tail. The possibility that tail musculature might indirectly influence morphogenesis of the regenerate was tested by unilaterally removing 99% of the lateral muscle mass for five to six caudal segments. Ten days after muscle ablation, tails were amputated through the deficient area. Unlike previous experiences with ambystomid larvae, P. cinereus regulates completely producing a normal tail regenerate and at a rate comparable to that following simple amputation.  相似文献   

5.
In this study the effects of vitamin A on tadpoles of Polypedates maculatus with an amputated tail were investigated. After amputation of half the tail at the hindlimb-bud stage, tadpoles were exposed to vitamin A (palmitate) 10 IU/ml solution for 24 hr (Group I), 48 hr (II), 72 hr (III), 96 hr (IV), 120 hr (V) or 144 hr (VI). Vitamin A was deleterious to survival of the tadpoles since 10, 30 and 30% tadpoles died from Group IV, V and VI, respectively before the emergence of forelimbs. Regeneration of the tail was abnormal in 91.7% of the tadpoles. Vitamin A induced homeotic transformation of the amputated tail to hindlimbs in 11.6% of the animals. Normal limb development was suppressed partially or completely in 48.3% tadpoles. These results indicate that in addition to traumatic effects, vitamin A can lead to homeotic transformation of the tail into hindlimbs and can also interfere with normal development of limbs.  相似文献   

6.
In the laboratory setting, environmental factors have a major influence on the well-being of laboratory animals. The present study shows the importance of a semi-natural light-dark cycle. In this experiment one cohort of mice was kept with a continuous lighting for one week. After the first week the artificial light-dark cycle was 12:12 with lights on at 07:00 h. The second cohort of mice was kept with this 12:12 h light-dark cycle from the start. Half of each cohort received environmental enrichment. In order to analyse corticosterone levels, urine samples were collected. To measure agonistic behaviour, the behaviour of the mice was recorded on videotape immediately after cage cleaning. A significant difference in corticosterone levels between cohorts was found during disturbed lighting, but not after lighting conditions were reset to 12:12 h. In the first test week, mice subjected to disturbed lighting also showed a significantly shorter agonistic latency than control mice. This difference had disappeared when in the second test week all mice experienced 12:12 h lighting. No effects of enriched housing were found. This experiment has shown that disturbed lighting for socially-housed male mice caused physiological and behavioural changes indicative of stress, not only leading to much higher levels of corticosterone but also to shorter agonistic latency within the groups.  相似文献   

7.
Spinal axons of the adult newt will regenerate when the spinal cord is severed or when the tail is amputated. Ischemia and associated hypoxia have been correlated with poor central nervous system regeneration in mammals. To test the effects of ischemia on newt spinal cord regeneration, the spinal cord and major blood vessels of the newt tail were severed 2 cm caudal to the cloaca as a primary injury. This primary injury severely reduced circulation in the caudal direction for 7 days; by day 8, circulation was largely restored. After various periods of time after primary injury, tails were amputated 1 cm caudal to the primary injury (in the area of ischemia) and tested for regeneration. If the tail was amputated within 5 days of the primary injury, regeneration did not occur. If amputation was 7 days or longer after the primary injury, a regenerative response occurred. Histology showed that in the non-regenerating tails the spinal cord and associated ependyma, known to be important to tail regeneration, had degenerated in the rostral direction. Such degeneration was prevented when tails were first amputated and allowed to form blastemas before the primary injury. The data indicate that the first 5-7 days of blastema formation are particularly sensitive to compromised blood flow (ischemia/hypoxia). It follows that mechanisms must be present in the adult newt to reduce ischemia to a minimum and thus allow ependymal outgrowth and tail regeneration.  相似文献   

8.
The formation of constriction bands after amputation of the tail has been studied in embryos of the Common lizard ( Lacerta vivipara ) after the eggs have been removed from the mother and placed in culture. The constrictions are formed from the amnion and the inner wall of the allantois; they usually develop within two days after operation. They compress the tail stump and cause necrosis and detachment of its distal portion, simulating the effect of the experimental injury. Similar constriction of the tail followed by auto-amputation occurs if the embryonic membranes are incised but the tail is left intact. In neither case does the tail regenerate after such auto-amputation. Small outgrowths resembling regenerates were formed, however, in certain cases where the tail was amputated under circumstances in which constrictions could not develop. Although amputation of the tail in very late embryos was followed by the appearance of constrictions, these failed to compress the tissues sufficiently to cause subsequent auto-amputation; regeneration of the stump normally took place. The constrictions described are comparable with the amniotic bands alleged to cause congenital amputation of the extremities in man.  相似文献   

9.
The Enchytraeida Oligochaeta Enchytraeus japonensis propagates asexually by spontaneous autotomy. Normally, each of the 5-10 fragments derived from a single worm regenerates a head anteriorly and a tail posteriorly. Occasionally, however, a head is formed posteriorly in addition to the normal anterior head, resulting in a bipolar worm. This phenomenon prompted us to conduct a series of experiments to clarify how the head and the tail are determined during regeneration in this species. The results showed that (1) bipolar head regeneration occurred only after artificial amputation, and not by spontaneous autotomy, (2) anesthesia before amputation raised the frequency of bipolar head regeneration, and (3) an extraordinarily high proportion of artificially amputated head fragments regenerated posterior heads. Close microscopic observation of body segments showed that each trunk segment has one specific autotomic position, while the head segments anterior to the VIIth segment do not. Only the most posterior segment VII in the head has an autotomic position. Examination just after amputation found that the artificial cutting plane did not correspond to the normal autotomic position in most cases. As time passed, however, the proportion of worms whose cutting planes corresponded to the autotomic position increased. It was suspected that the fragments autotomized after the artificial amputation (corrective autotomy). This post-amputation autotomy was probably inhibited by anesthesia. The rate at which amputated fragments did not autotomize corresponded roughly to the rate of bipolar regeneration. It was hypothesized then that the head regenerated posteriorly if a fragment was not amputated at the precise autotomic position from which it regenerated without succeeding in corrective autotomy.  相似文献   

10.
Patterns of mitotic cells’ distribution and activation of the MAP-kinase cascade during the regeneration of Xenopus laevis tadpole tails were studied before and during the refractory period. It is known that the tadpoles of Xenopus laevis are able to fully restore the full structure of the tail after amputation. However, in the refractory period (stage 45–47), the ability to regenerate is significantly reduced, until its complete absence. The mechanisms of this phenomenon are still poorly understood. We conducted a comparative analysis of the average number of mitotic cells on 0–4 days post amputation in normally regenerating tails and in tails amputated during the refractory period. A significant decrease in the number of proliferating cells throughout the surface of the tail in the refractory period compared with their sharp increase in the blastema area in normally regenerating tadpoles was shown. In addition, we detected activation of the MAP-kinase cascade (dpERK1/2) during normal regeneration and demonstrated its full inhibition during the refractory period. At the same time, in the distal part of the tail amputated in the refractory period, activation of the expression of the regenerative marker gene Fgf20 was not detected. Thus, we can conclude that the blocking of the regenerative capacity in tadpoles during the refractory period is accompanied by a sharp suppression of the mitotic activity of the cells and a misregulation of the activation of the Fgf–MAP-kinase cascade in the tail after amputation.  相似文献   

11.
Citrus aurantium L. is popularly used to treat anxiety, among other indications suggesting central nervous system action. Previous studies showed anxiolytic effect in the essential oil from peel in mice evaluated on the elevated plus maze [Carvalho-Freitas, M.I.R., Costa, M., 2002. Anxiolytic and sedative effects of extracts and essential oil from Citrus aurantium L. Biological and Pharmaceutical Bulletin 25, 1629-1633.]. In order to better characterize the activity of the essential oil, it was evaluated in two other experimental models: the light-dark box and the marble-burying test, respectively related to generalized anxiety disorder and to obsessive compulsive disorder. Mice were treated acutely by oral route 30 min (single dose) or once a day for 15 days (repeated doses) before experimental procedures. In light-dark box test, single treatment with essential oil augmented the time spent by mice in the light chamber and the number of transitions between the two compartments. There were no observed alterations in the parameters evaluated in light-dark box after repeated treatment. Otherwise, single and repeated treatments with essential oil were able to suppress marble-burying behavior. At effective doses in the behavioral tests, mice showed no impairment on rotarod procedure after both single and repeated treatments with essential oil, denoting absence of motor deficit. Results observed in marble-burying test, related to obsessive compulsive disorder, appear more consistent than those observed in light-dark box.  相似文献   

12.
Summary When the tumor-bearing leg of C57BL/6J mice was amputated 16 days after SC inoculation of 106B16 melanoma cells, all the amputated mice died of pulmonary metastases. Transfer of lungs from the amputated to normal syngeneic mice revealed tumor cells in the lungs just after amputation. Repeated weekly injections of BCG and irradiated tumor cells, beginning 24 h after amputation of the tumor-bearing limb, prolonged the survival only of mice presensitized to BCG. Injections of BCG or irradiated melanoma cells alone, of neuraminidase- and mitomycin C-treated tumor cells or of Levamisole had no effect, but injections of ConA-coated tumor cells slightly prolonged the survival of the amputated mice. Both BCG and B16 cells induced humoral and cell-mediated immunity but there was no cross-reactivity between BCG and B16 cells. Abbreviations used: ConA, concanavalin A; SC, subcutaneous; IP, intraperitoneal; IV, intravenous; ID, intradermal; IT, intratumoral; PBS, phosphate-buffered saline (0.01 M sodium phosphate, pH 7.1); VCN, Vibrio cholerae neuraminidase; HBSS, Hank's balanced salt solution; RPMIM, Roswell Park Memorial Institute medium  相似文献   

13.
Very little is known about the factors that cause variation in regenerative potential within and between species. Here, we used a genetic approach to identify heritable genetic factors that explain variation in tail regenerative outgrowth. A hybrid ambystomatid salamander (Ambystoma mexicanum x A. andersoni) was crossed to an A. mexicanum and 217 offspring were induced to undergo metamorphosis and attain terrestrial adult morphology using thyroid hormone. Following metamorphosis, each salamander’s tail tip was amputated and allowed to regenerate, and then amputated a second time and allowed to regenerate. Also, DNA was isolated from all individuals and genotypes were determined for 187 molecular markers distributed throughout the genome. The area of tissue that regenerated after the first and second amputations was highly positively correlated across males and females. Males presented wider tails and regenerated more tail tissue during both episodes of regeneration. Approximately 66–68% of the variation in regenerative outgrowth was explained by tail width, while tail length and genetic sex did not explain a significant amount of variation. A small effect QTL was identified as having a sex-independent effect on tail regeneration, but this QTL was only identified for the first episode of regeneration. Several molecular markers significantly affected regenerative outgrowth during both episodes of regeneration, but the effect sizes were small (<4%) and correlated with tail width. The results show that ambysex and minor effect QTL explain variation in adult tail morphology and importantly, tail width. In turn, tail width at the amputation plane largely determines the rate of regenerative outgrowth. Because amputations in this study were made at approximately the same position of the tail, our results resolve an outstanding question in regenerative biology: regenerative outgrowth positively co-varies as a function of tail width at the amputation site.  相似文献   

14.
The short-term effect of total or partial single-digit denervation on receptive fields (RFs) of neurons in somatosensory cortex (area 3b) was examined in five macaque monkeys. In two animals, after denervation by amputation, it was found that electrode positions that initially recorded neurons with RFs on the amputated digit had new RFs extending from the wound. Often the new fields were on adjacent digits. Neurons with initial RFs that were partially amputated, or in some cases close to but not on the amputated digit, showed considerable expansion of the remaining RF. In three monkeys local anesthesia was used to provide a temporary denervation. In these experiments electrodes were placed in equivalent positions in both cortices. The effect on cortex contralateral to the denervation was similar to that seen with amputation. However, after anesthesia returned to the digit, the expanded RFs contracted. In cortex ipsilateral to the denervation, RFs were on the opposite unaffected hand. These also rapidly expanded and then contracted, with the same time course as their counterparts in cortex contralateral to the denervation. Because of the rapidity of the expansion and its temporary nature with short-term denervation, the basis of the effect is probably an unmasking of existing but normally unexpressed connections, which are normally inhibited by the intact output from the denervated area. The wide arborization fields of thalamocortical afferents provide a potential source for the unmasked sensitivity. A mechanism for the inhibition that normally suppresses the expression of large RFs is not readily apparent. However, work in other species suggests that peripheral C fibers provide the primary source of input to central inhibitory circuits.  相似文献   

15.
16.
J Kim S  Zhuo M 《生理学报》2004,56(4):436-443
手术截断小鼠尾末端可诱发长期性的痛觉过敏和吗啡镇痛效应变化。这种长期性的变化可能是由于中枢神经系统的神经可塑性变化引起的(从脊髓背角到皮层)。在截尾5周后,小鼠后肢和余下的尾端出现痛敏反应。低剂量吗啡可诱发热板的易化反应。这些可塑性变化能延长至5周,因此小鼠的截尾模型可以用于研究截肢后的中枢性长期性的可塑性变化。  相似文献   

17.
The zebrafish larval tail fin is ideal for studying tissue regeneration due to the simple architecture of the larval fin-fold, which comprises of two layers of skin that enclose undifferentiated mesenchyme, and because the larval tail fin regenerates rapidly within 2-3 days. Using this system, we demonstrate a method for capturing the repair dynamics of the amputated tail fin with time-lapse video brightfield stereomicroscopy. We demonstrate that fin amputation triggers a contraction of the amputation wound and extrusion of cells around the wound margin, leading to their subsequent clearance. Fin regeneration proceeds from proximal to distal direction after a short delay. In addition, developmental growth of the larva can be observed during all stages. The presented method provides an opportunity for observing and analyzing whole tissue-scale behaviors such as fin development and growth in a simple microscope setting, which is easily adaptable to any stereomicroscope with time-lapse capabilities.  相似文献   

18.
Standard housing for laboratory mice severely restricts natural behaviour and the control that the animal has over its environment. Providing the cage with objects is a method that has been used to both increase environmental complexity, promote the performance of natural behaviour and provide greater controllability for the animal. This method of furnishing cages has mostly been studied in adult animals, and little is known about the influence that the preweaning environment has on the behaviour of mice as adults. This study aimed to investigate the effects on mice behaviour of preweaning and postweaning housing environment. In this experiment, 64 pairs of animals of the strain C57BL/6J were used. Half of the animals were born and reared until weaning in standard cages and the other half in cages twice the size of the standard and furnished with nesting material, a cardboard tube, a PVC nest box and a wooden chewblock. After weaning, half the animals in each group were changed to the other type of cage, whereas the other half remained in the same environment; in both cases they were kept in single-sex pairs of littermates. Behaviour during the dark, active period was studied through video recordings. We found no main effects of preweaning environment on behaviour; however, mice moved from furnished to standard cages at weaning showed a decrease in inactive behaviour at four weeks of age. Mice housed after weaning in standard cages spent less time inactive, and more time engaging in activities like feeding and drinking, self-grooming and allogrooming. A sex difference was also found, in that females showed a greater performance of exploratory behaviour as well as a greater prevalence of stereotypies. The use of different objects and locations within the furnished cage was also analysed at both ages. Results show that at eight weeks of age mice spent more time at the top of the cage, and that the use of the nest box (although not for resting) increased between four and eight weeks. Mice were found to use the nest box as a nesting site/sleeping place only at age four weeks, whereas they always used the nesting material for sleeping.  相似文献   

19.
DBA/2 male mice were treated with monosodium glutamate (MSG) in a dose of 4 mg/g on 1, 3, 5, 7, 9 days after birth. Saline treated and intact males were used as control groups. MSG treated males displayed decreased number of crossed squares, rearings, entries in the centre and time in the centre of open field in comparison with saline-treated but not intact animals. Time in the light compartment of the light-dark box was increased in MSG-treated mice versus both saline treated and intact animals. MSG administration reduced acoustic startle response but did not affect the magnitude of prepulse inhibition of the startle reflex. Sexual motivation in male mice was reduced by MSG, the same trend was observed after saline treatment. MSG administration increased corticosterone basal level 4-fold while saline treatment did not affect it. These data suggest that neonatal administration of MSG decreases locomotion, exploratory activity, anxiety in male mice, while corticosterone level is increased. Saline treatment increases these parameters (except sexual motivation), and this augmentation is not connected to changes in corticosterone basal level.  相似文献   

20.
The light-dark box (LDB) and the open-field (OF) tests are widespread experimental models for studying locomotion and anxiety in laboratory rats and mice. The fact that rodents are nocturnal animals and more active at night raises a critical question of whether behavioral experiments carried out in the light phase are methodologically correct. Parameters of behavior of four mouse strains (C57BL/6J, DBA2/J, AKR/J and CBA/LacJ) in the light-dark box and open-field tests in the light and dark phases were compared. No significant influence of the phase of testing on anxiety in LDB and OF tests was revealed. In the OF test CBA mice showed increased locomotor activity, whereas AKR and C57BL/6 mice showed increased defecation in the dark phase. It was concluded that: 1) the phase of testing is not crucial for the expression of anxiety in LDB and OF; 2) the sensitivity to the phase of testing depends on the genotype; 3) the indices of behavior in the genotypes sensitive to the phase of testing (locomotion in the CBA and defecation in the AKR and C57BL/6 mouse strains) are increased in the dark phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号