首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Studies on the subcellular distribution of NADPH-linked aldehyde reductase from rat brain showed that 10% of the total reductase activity is located in the mitochondrial-synaptosomal fraction. There are differences in the percentages of reductase activity found in the synaptosomes compared to cytosol in various regions of the brain. The NADPH-linked aldehyde reductase from the synaptosomal fraction exhibited a nonlinear Lineweaver-Burk plot. This nonlinearity is due to the presence of two distinct aldehyde reductases, which can be distinguished by Michealis constants forp-nitrobenzaldehyde of 4.1×10–5 M and 2.6×10–6 M. The two NADPH-linked aldehyde reductases isolated from synaptosomes were further characterized according to pH optima, andK i values for inhibition by barbiturates. In addition regional distributions for the two enzymes were determined. TheK i values for pentobarbital for the highK m enzyme and the lowK m enzyme were estimated to be 2×10–5 M and 6×10–5 M, respectively. It was concluded from the above studies that the lowK m reductase is probably responsible for 3,4-dihydroxyphenylglycoaldehyde (derived from norepinephrine) reduction in brain and a role of the highK m enzyme for protection of neurons from high concentrations of chemically reactive aldehydes was proposed.This work was supported in part by Grants from the National Institute of Mental Health, MH 18948 from the University of Colorado Council on Research and Creative Work and by an MBS Program Grant #081-39.This work was performed in partial fulfillment of the requirements for the Ph. D. thesis.  相似文献   

2.
Abstract— The presence of a nonspecific NADH-linked aldehyde reductase was demonstrated in various regions of bovine brain in vitro. With m-nitrobenzaldehyde as substrate, the rate of NADH oxidation was approximately 4 nmol.min-1.(mg of protein)-1 in the cerebellum, pons and medulla; but somewhat lower rates [2–3 nmol.min-1.(mg of protein)-l] were obtained in the other areas of the brain examined. The enzyme was localized primarily in the soluble, supernatant fraction of rat brain homogenates. The enzyme from the supernatant fluid fraction of bovine brain was purified approximately 350-fold by ammonium sulphate fractionation and chromatography on calcium phosphate-gel, DEAE-cellulose and Sephadex G200 columns. The partially purified enzyme catalysed the reduction of a number of aldehydes, including substituted benzaldehydes and aliphatic aldehydes of intermediate chain lengths. Short chain aliphatic aldehydes, such as acetaldehyde, were not reduced by the enzyme and butyraldehyde was a poor substrate. With m-nitrobenzaldehyde as substrate, NADH was oxidized at an approximately 10-fold faster rate than NADPH. The pH optimum for the enzyme was 6.75 for aldehyde reduction, whereas the rate of oxidation of m-nitrobenzylalcohol was optimal at pH 10.0 with NAD as the co-substrate. Km and K3 values ranged from 10 μM to 10 mM for various aldehydes and from 10 to 30 μM for the cofactors. Oxidation of NADH by the partially purified enzyme was not inhibited by 10m pyrazole or by 1 mM phenobarbital. However, the enzyme activity was inhibited by approximately 60 percent by 1 mM chlorpromazine or by 5 mM 1,10-orthophenanthroline. Our data demonstrate that the enzyme is not only separable from the NADPH-linked aldehyde reductase described previously by TABAKOFF and ERWIN, but also is quite different in substrate specificity and inhibitor sensitivity from the ‘classical’, pyrazole-sensitive, NAD- linked alcohol dehydrogenase (EC 1.1.1.1).  相似文献   

3.
The Michaelis constants of purified aldehyde dehydrogenase (aldehyde: NAD oxidoreductase, EC 1.2.1.3) and aldehyde reductases (alcohol: NADP oxidoreductase, EC 1.1.1.2) from pig brain have been obtained for a number of biologically important aldehydes. The aldehydes include 3,4-dihydroxyphenylacetaldehyde, D-3,4-dihydroxyphenylglycolaldehyde, and 5-hydroxyindoleacetaldehyde. The relative activities of the aldehyde-catabolizing enzymes in the soluble fractions of the cerebral cortex and caudate nucleus of pig brain have also been obtained. The values are used to show that the metabolic fates of the various aldehydes—and hence of the parent amines—may be explained in terms of the simple kinetics of these enzymes. It is also shown that the metabolic fates of the aldehydes may be influenced by their rates of synthesis. As the rate of aldehyde production increases the proportion of aldehyde reduced may be expected to increase at the expense of the proportion of aldehyde oxidized. It is further concluded from the kinetic constants that selective inhibition of aldehyde dehydrogenase may greatly affect the catabolism of dopamine and 5-hydroxytryptamine by altering the relevant aldehyde concentrations, while the catabolism of norepinephrine is little affected under these circumstances. Conversely, it is concluded that selective inhibition of the aldehyde reductases should scarcely affect the catabolism of dopamine and 5-hydroxytryptamine, but that the catabolism of norepinephrine should be markedly affected. The results also indicate that the concentrations of the various deaminated metabolites of the biogenic amines could be selectively controlled by modulation of the activity of the enzymes of aldehyde catabolism in brain.  相似文献   

4.
The monoamine oxidase A metabolite of noradrenaline, 3,4-dihydroxyphenylglycolaldehyde, is the precursor of 3,4-dihydroxymandelic acid, and 3,4-dihydroxyphenylglycol, metabolites of noradrenaline. Owing to difficulties in purifying this aldehyde, it has not been previously characterized or identified in biological sources. This paper describes an enzymatic synthesis, purification, and characterization of 3,4-dihydroxyphenylglycolaldehyde. The aldehyde metabolite is identified in postmortem human brain using high-performance liquid chromatography and electrochemical detection. We estimate the concentration in human hippocampus to be 0.164 +/- 0.05 nmol/g. The importance of this aldehyde metabolite of noradrenaline is discussed.  相似文献   

5.
We have propsed earlier a three gene loci model to explain the expression of the aldo-keto reductases in human tissues. According to this model, aldose reductase is a monomer of α subunits, aldehyde reductase I is a dimer of α, β subunits, and aldehyde reductase II is a monomer of δ subunits. Using immunoaffinity methods, we have isolated the subunits of aldehyde reductase I (α and β) and characterized them by immunocompetition studies. It is observed that the two subunits of aldehyde reductase I are weakly held together in the holoenzyme and can be dissociated under high ionic conditions. Aldose reductase (α subunits) was generated from human placenta and liver aldehyde reductase I by ammonium sulfate (80% saturation). The kinetic, structural and immunological properties of the generated aldose reductase are similar to the aldose reductase obtained from the human erythrocytes and bovine lens. The main characteristic of the generated enzyme is the requirement of Li2SO4(0.4 M) for the expression of maximum enzyme activity, and its Km for glucose is less than 50 mM, whereas the parent enzyme, aldehyde reductase I, is completely inhibited by 0.4 M Li2SO4 and its Km for glucose is more than 200 mM. The β subunits of aldehyde reductase I did not have enzyme activity but cross-reacted with anti-aldehyde reductase I antiserum. The β subunits hybridized with the α subunits of placenta aldehyde I, and aldose reductase purified from human brain and bovine lens. The hybridized enzyme had the characteristics properties of placenta aldehyde reductase I.  相似文献   

6.
Rat kidney was shown to contain two NADPH-linked aldehyde reductases (alcohol:NADP+) oxidoreductase, EC 1.1.1.2) with different substrate affinities. The high-Km aldehyde reductase, which was purified to apparent homogeneity, had a molecular weight of 32 000 as determined by Sephadex G-100 gel filtration, and of 37 000 by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The purified enzyme reduced various aliphatic aldehydes of different carbon-chain lengths besides many chemicals containing aldehyde groups. The Km values for n-hexadecanal and n-octadecanal were 8 microM and 4 microM, respectively. Bovine serum albumin (1.8 mM) stimulated the reduction of n-hexadecanal and n-octadecanal, and increased the Vmax values by about 15-fold without changing the Km values. The kidney enzyme was not distinguishable from the brain and liver high-Km aldehyde reductases in mobility on polyacrylamide gel electrophoresis, immunological properties, peptide maps or substrate specificity.  相似文献   

7.
1. NADPH-linked aldehyde reductase from pig, ox and rat brain exhibits non-linear reciprocal plots when partially purified enzyme preparations are studied. 2. In pig brain this non-linearity is due to the presence of two distinct aldehyde reductases, which can be separated by DEAE-cellulose chromatography. 3. These two enzymes can be distinguished by several criteria, including pH optima, Michaelis constants for substrates and their inhibitor sensitivity. 4. The probable role of these enzymes in the metabolism of the aldehydes derived from the biogenic amines is discussed.  相似文献   

8.
Abstract: Rat brain contains two major NADPH-linked aldehyde reductases that can reduce succinate semialdehyde to 4-hydroxybutyrate. One of these enzymes appears to be fairly specific for succinate semialdehyde and is not significantly inhibited by classic aldehyde reductase inhibitors such as barbiturates. The other enzyme can reduce several aromatic aldehydes and is strongly inhibited by barbiturates and branched-chain fatty acids. Using one such inhibitor, it was possible to distinguish between and measure the two enzyme activities separately in various rat brain regions and in subcellular fractions. Both enzymes are mainly cytoplasmic but there is some activity in the synaptosomal fraction. The activity of the specific succinic semialdehyde reductase is highest in the cerebellum, where it represents 21% of the total activity, and lowest in the cortex, where it represents about 11% of the total activity.  相似文献   

9.
Synthesis of long-chain fatty alcohols in preputial glands of mice is catalyzed by an NADPH-dependent acyl coenzyme A (CoA) reductase located in microsomal membranes; sensitivity to trypsin digestion indicates that the reductase is on the cytoplasmic side of the membrane. Results with pyrazole and phenobarbital demonstrate the reaction is not catalyzed by a nonspecific alcohol dehydrogenase or an aldehyde reductase. Acyl-CoA reductase activity is sensitive to sulfhydryl and serine reagent modification, is stimulated by bovine serum albumin, and produces an aldehyde intermediate. The activity is extremely detergent sensitive and cannot be restored even after removal of the detergents. Phospholipase C or asolectin treatment does not release the acyl-CoA reductase from microsomal membranes, but causes a significant decrease in the activity recovered in the membrane pellet. Glycerol does not solubilize the reductase activity, nor does 3.0 m NaCl; however, the combination of glycerol and 3.0 m NaCl did release about 50% of the acyl-CoA reductase from the microsomal pellet. Substrate concentration curves obtained in the presence or absence of bovine serum albumin show significant differences in enzyme activities. The reductase is sensitive to the concentration of palmitoyl-CoA and is progressively inhibited at levels beyond the critical micellar concentration of the substrate. The apparent Km for acyl-CoA reductase is 14 μm; however, the maximum velocity varies with the concentration of albumin used. Expression of enzyme activity in delipidated microsomes requires specific phospholipids, which suggests that in vivo regulation of acyl-CoA reductase activity could be achieved through modifications in membrane lipid composition.  相似文献   

10.
Betaine aldehyde dehydrogenase from Xanthomonas translucens was purified to apparent homogeneity by ammonium sulfate fractionation, followed by ion-exchange, butyl-Toyopearl and gel filtration chromatography. The amino acid composition and the N-terminal sequence of 35 amino acid residues were determined. The enzyme was found to be a tetramer with identical 50 kDa subunits. Both NAD and NADP could be used as a cofactor for the enzyme and Km values for NAD and NADP were 70 μM and 50 μM, respectively. The enzyme was highly specific for betaine aldehyde and the Km value for betaine aldehyde was 0.19 mM.  相似文献   

11.
NADPH:cytochrome P-450 (c) reductase is a microsomal enzyme which is involved in the cytochrome P-450-dependent biotransformation of many exogenous agents as well as of some endogenous molecules. Using cytochromec as a substrate, the kinetic parameters of this enzyme were determined in brain microsomes. The comparison of the NADPH:cytochrome P-450 reductase's Vmax values and cytochrome P-450 contents in both fractions, suggests a role of cerebral NADPH:cytochrome P-450 reductase in cytochrome P-450 independent pathways. This is also supported by the different developmental pattern of brain enzyme as compared to the liver enzyme, and by the presence of a relatively high NADPH:cytochrome P-450 reductase activity in immature rat brain and neuronal cultures, while cytochrome P-450 was hardly detectable in these preparations. The enzyme activity was not induced by a phenobarbital chronic treatment neither in the adult brain nor in cultured neurons, suggesting a different regulation of the brain enzyme expression.  相似文献   

12.
N-Acetyl-β-hexosaminidase A was purified to homogeneity from human and monkey brains by the conventional procedures followed by concanavalin A–Sepharose affinity chromatography. The optimal activity was observed at pH 4·5 for both enzyme preparations with both the aglycones N-acetylglucosamine and N-acetylgalactosamine derivatives. The Km values for hexosaminidase A from monkey brain were 0·26 mm and 0·04 mm respectively for N-acetylglucosamine and N-acetylgalactosamine. Km values obtained for glucosamine and galactosamine derivatives for the human brain hexosaminidase A were of the same order. The glycoprotein nature of the enzymes was established by the affinity towards concanavalin A as well as by the presence of sialic acid, galactose, glucose, mannose and hexosamines in the enzyme molecule from monkey brain.  相似文献   

13.
The effects of inhibitors of aldehyde reductase (alcohol:NADP+ oxido-reductase, EC 1.1.1.2) on the formation of 3-methoxy-4-hydroxyphenethylene glycol from normetanephrine have been studied in rat brain homogenates. The reaction pathway was shown to be unaffected by several inhibitors of the major (high Km) form of aldehyde reductase such as sodium valproate. Two isoenzymes of aldehyde reductase have been separated and characterized from rat brain. The minor (low Km) isoenzyme is shown to be relatively insensitive to sodium valproate and exhibits a similar inhibitor-sensitivity profile to that obtained for methoxyhydroxyphenethylene glycol formation. The low Km isoenzyme is therefore implicated in catecholamine metabolism. The metabolism of succinic semialdehyde and xylose by rat brain cytosol has also been examined. Aldose metabolism may also be attributed to the action of the low Km reductase, but the existence of a separate succinic semialdehyde reductase is postulated. The possible roles of aldehyde reductases in brain metabolism and the relationship between these enzymes and aldose reductase (alditol: NADP+ 1-oxidoreductase, EC 1.1.1.21) are discussed.  相似文献   

14.
SYNOPSIS. Cell-free extracts of a streptomycin-bleached strain of Euglena gracilis var. bacillaris have been examined for enzyme systems primarily responsible for the oxidation of reduced pyridine nucelotides. NADH lipoyl dehydrogenase, NADH and NADPH oxidase, NADH and NADPH diaphorase, and NADH and NADPH cytochrome c reductase have been demonstrated. The NADPH-linked enzymes had lower activity rates and were less sensitive to N-ethyl maleimide and p-hydroxymercuribenzoate than their NADH-linked counterparts. NADH cytochrome c reductase was the most sensitive to antimycin A. Michaelis-Menten constants (Km) determined were as follows: NADH diaphorase, 350 μM; NADPH diaphorase, 200 μM; NADH cytochrome c reductase, 13 μM; NADPH cytochrome c reductase, 9 μM; NADH oxidase, 100 μM; NADPH oxidase 150 μM; NADH lipoyl dehydrogenase, 0.35 μM. Enzyme activities after storage at –5 C indicate that the diaphorases are less labile than the other tested enzymes, and the differential activities of the NADH and NADPH linked enzymes suggest that functionally they may have different roles.  相似文献   

15.
The activity of extracted NADH-NO3? reductase was measured in the marine dinoflagellates Amphidinium carteri Hulburt and Cachonina niei Loeblich. Its activity showed a diel periodicity and was ca. twice as great at midday as at midnight. The enzyme activity was unstable, with an in vitro half-life of 2–3 h. Values of enzyme activity were low or undetectable during lag phase but paralleled the instantaneous growth rate value during log phase. Nitrate reductase activity was not found in the stationary phase of growth, but additions of NO3? resulted in enzyme activity after 24h. When A. carteri was exposed to a series of light intensities for several weeks, the division rate and enzyme activity increased with increasing light intensity up to saturating intensities. In 6 h exposures, enzyme activity decreased with decreasing light intensities below light intensities saturating division rate. Additions of NH4+ (0.5–50 μm) to A. carteri cultures decreased the amount of extractable enzyme. The in vitro activity was not inhibited by similar NH+4 concentrations.  相似文献   

16.
Dihydrofolate reductase activity in fertilized eggs of the sea urchin, Hemicentrotus pulcherrimus, was almost the same as in unfertilized eggs. Aminopterin inhibited the enzyme competitively with dihydrofolate (FH2). The apparent Km value for FH2 in the dihydrofolate reductase reaction was about 0.1 μM in the crude homogenate of both unfertilized and fertilized eggs. Dihydrofolate reductase in the eggs was also inhibited by palmitoyl-CoA. The inhibition was canceled by polyamines, especially by spermine, but putrescine failed to prevent the enzyme from the inhibition. The change in long-chain acyl-CoA and polyamine concentrations during fertilization are discussed as possible regulatory factors of the enzyme.  相似文献   

17.
Since ferredoxin-dependent sulfite reductase (EC 1.8.7.1) and nitrite reductase (EC 1.7.7.1) can both catalyze the reduction of SO2-3 and NO?2, physiological and biochemical evidence is needed for properly classifying the two enzyme activities. They were therefore compared during ontogeny of pea leaves and in the effect of their products, sulfide and ammonium, on their catalytic activity. In the crude extract of the young second leaf of pea plants, Pisum sativum L. cv. Vatters Frühbusch, no ferredoxin-nitrite reductase activity could be detected, but ferredoxin-sulfite reductase and ATP-sulfurylase (EC 2.7.7.4), measured for comparison, were at 24 and 14%, respectively, of their maximal activity per leaf. After 11 and 12 days, respectively, ATP-sulfurylase and ferredoxin-sulfite reductase were no longer detectable, whereas ferredoxin-nitrite reductase was still at more than 30% of its maximal activity per leaf. Ferredoxin-sulfite reductase was inhibited by 50% with 18 μM and 100% with 30 μM sulfide produced by this enzyme during its assay. Sulfide at 100 μM added to the assay mixture completely inhibited ferredoxin-sulfite reductase activity in the crude extract, the 30000 g pellet and its supernatant. The same addition reduced ferredoxinnitrite reductase activity by 20% in the crude extract and by 100% in the 30000 g pellet. NH+4 at 100 μM did not affect ferredoxin-sulfite reductase or ferredoxin-nitrite reductase activity. The inhibition by sulfide and the changes in activity during ontogeny similar to ATP-sulfurylase (which catalyzes the first step of assimilatory sulfate reduction) represent biochemical and physiological evidence for the correct classification of ferredoxin-sulfite reductase. The complete inhibition of ferredoxin-nitrite reductase activity in the 30000 g pellet by S2- indicates that this activity was due to a ferredoxin-sulfite reductase.  相似文献   

18.
An aldehyde reductase catalyzing the NADPH-dependent reduction of long-chain aldehydes has been purified 690-fold from bovine cardiac muscle. Based on the results obtained during gel filtration, this enzyme has an apparent molecular weight of 34,000. The pI of the aldehyde reductase was 6.1 and the enzymatic activity had a sharp pH optimum at 6.4. The enzyme catalyzed the reduction of aromatic aldehydes and aliphatic aldehydes having eight or more carbon atoms. Short-chain aldehydes, aldoses, or ketoses or long-chain methyl ketones were not utilized as substrates by this enzyme. However, the methyl ketone, pentadecan-2-one, was a competitive inhibitor of this enzyme with an apparent Ki = 10 μm when tetradecanal was the variable substrate. The reaction was not reversible when ethanol or hexadecanol was employed as substrate, utilizing either NAD+, or NADP+ as a cofactor. The addition of 10 mm pyrazole to the incubation medium had no effect on the enzymatic activity.  相似文献   

19.
NADPH-cytochrome P450 reductase was purified to electrophoretic homogeneity from detergent-solubilized liver microsomes from the leaping mullet (Liza saliens). The purified reductase was characterized with respect to spectral, electrophoretic, and biocatalytic properties. In addition, effects of pH, ionic strength, and the substrate concentration on the NADPH-dependent cytochrome c reductase activity of the purified fish liver cytochrome P450 reductase were studied. Cytochrome P450 reductase was purified 438-fold with a yield of 17.5% with respect to the initial amount present in the fish liver microsomes. The specific activity of the enzyme was found to be 52.6 μmol cytochrome c reduced per minute per mg protein. The monomer molecular weight of the purified enzyme was calculated to be 77,000 ± 1000 when electrophoresed on polyacrylamide gels under the denaturing conditions in the presence of SDS. The absorption spectrum of fish reductase showed two peaks at 378 and 455 nm. NADPH-dependent cytochrome c reductase activity of the purified Liza saliens liver cytochrome P450 reductase was found to be maximal when pH was between 7.4 and 7.8. The apparent Km of the purified enzyme was found to be 7.69 μM for cytochrome c when the enzyme activity was measured in 0.3 M potassium phosphate buffer, pH 7.7, at room temperature, and the enzyme was fully saturated by its substrate, cytochrome c, when the substrate concentration was at or above the 70 μM. Furthermore, the purified enzyme was biocatalytically active in reconstituting the 7-ethoxyresorufin O-deethylase activity in the reconstituted system containing purified mullet liver cytochrome P4501A1 and lipid. These results suggested that the purified fish liver cytochrome P450 reductase is similar to its mammalian counterparts with respect to spectral, electrophoretic, and biocatalytic properties. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 12: 103–113, 1998  相似文献   

20.
A new caffeic acid cinnamyl ester (1) was isolated from the n-hexane-soluble fraction of an MeOH extract of the gum resin of Ferula assa-foetida L. The structure was determined to be (2E)-3,4-dimethoxycinnamyl-3-(3,4 diacetoxyphenyl) acrylate on the basis of spectroscopic data including 1D- and 2D-NMR. Compound 1 showed moderate activity for inhibiting LPS-induced nitric oxide production in murine macrophage RAW264.7 cells, with an IC50 value of 54.9 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号