首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myostatin regulation during skeletal muscle regeneration   总被引:16,自引:0,他引:16  
Myostatin, a member of the TGF-beta superfamily, is a key negative regulator of skeletal muscle growth. The role of myostatin during skeletal muscle regeneration has not previously been reported. In the present studies, normal Sprague-Dawley and growth hormone (GH)-deficient (dw/dw) rats were administered the myotoxin, notexin, in the right M. biceps femoris on day 0. The dw/dw rats then received either saline or human-N-methionyl GH (200microg/100g body weight/day) during the ensuing regeneration. Normal and dw/dw M. biceps femoris were dissected on days 1, 2, 3, 5, 9 and 13, formalin-fixed, then immunostained for myostatin protein. Immunostaining for myostatin revealed high levels of protein within necrotic fibres and connective tissue of normal and dw/dw damaged muscles. Regenerating myotubes contained no myostatin at the time of fusion (peak fusion on day 5), and only low levels of myostatin were observed during subsequent myotube enlargement. Fibres which survived assault by notexin (survivor fibres) contained moderate to high myostatin immunostaining initially. The levels in both normal and dw/dw rat survivor fibres decreased on days 2-3, then increased on days 9-13. In dw/dw rats, there was no observed effect of GH administration on the levels of myostatin protein in damaged muscle. The low level of myostatin observed in regenerating myotubes in these studies suggests a negative regulatory role for myostatin in muscle regeneration.  相似文献   

2.
Adult, untrained NMRI mice were exhausted on a motor-driven treadmill by an intermittent-type running programme. Serial cryostate sections for the staining of NADH-tetrazolium reductase, beta-glucuronidase, beta-N-acetylglucosaminidase, and beta-glycerophosphatase activities and for making hematoxylin-eosin staining were cut from m. quadriceps femoris 1, 2, 3, 5, 7, and 15 days after physical exhaustion. A strong increase in the activities of beta-glucuronidase and beta-N-acetylglucosaminidase was observed 7 days after exhaustion and the activity changes, which were similar for the both glycosidases, were more prominent in the highly oxidative red compared to less oxidative white fibres. Activity granules were more numerous in the perinuclear than the interfibrillar area of red fibres. Spots were arranged like longitudinal chains between myofibrils. Activity in connective tissue was usually observed only in animals exhausted 3--7 days earlier. Simultaneous activity in fibres exceeded that in connective tissue. beta-Glycerophosphatase activity was not, by the method used, seen in histologically "healthy" or normal-looking fibres. In samples taken 2--5 days after exhaustion some degenerating and necrotic fibres were observed. Inflammatory reaction was also observed being at its strongest five days after loading when mononuclear cells were seen inside necrotic fibres. The number of regenerating muscle cells was most abundant 7 days after exhaustion. It is suggested that temporary hypoxia, which accompanies exhaustive physical exercise in skeletal muscle, upsets the energy metabolism and homeostasis of fibres and causes the observed histological and histochemical alterations, which possess features typical of both lethal and sublethal acute cell injury.  相似文献   

3.
N C Stickland 《Acta anatomica》1978,102(2):203-208
The hind limb muscles of the spring hare (Pedetes capensis) were found to be relatively heavier than the hind limb muscles of the cane rat (Thryonomys gregorianus). The distribution of succine dehydrogenase activity was investigated in four of these muscles (m. gluteus superficialis, m.semimembranosus, m. biceps femoris and m.rectus femoris) from both animals. It was found that the spring hare had a higher proportion of low-activity fibres in all four muscles than the cane rat. All muscle fibre types were also smaller in diameter in the spring hare than the cane rat. These results are discussed in relation to the different locomotry habits of the two animals.  相似文献   

4.

Background

Tendon injury is one of the orthopedic conditions poses with a significant clinical challenge to both the surgeons and patients. The major limitations to manage these injuries are poor healing response and development of peritendinous adhesions in the injured area. This study investigated the effectiveness of a novel collagen implant on tendon healing in rabbits.

Results

Seventy five mature White New-Zealand rabbits were divided into treated (n = 55) and control (n = 20) groups. The left Achilles tendon was completely transected and 2 cm excised. The defects of the treated animals were filled with collagen implants and repaired with sutures, but in control rabbits the defects were sutured similarly but the gap was left untreated. Changes in the injured and normal contralateral tendons were assessed weekly by measuring the diameter, temperature and bioelectrical characteristics of the injured area. Clinical examination was done and scored. Among the treated animals, small pilot groups were euthanized at 5, 10, 15, 20, 30, 40 and 60 (n = 5 at each time interval) and the remainder (n = 20) and the control animals at 120 days post injury (DPI). The lesions of all animals were examined at macroscopic and microscopic levels and the dry matter content, water delivery and water uptake characteristics of the lesions and normal contralateral tendons of both groups were analyzed at 120 DPI.No sign of rejection was seen in the treated lesions. The collagen implant was invaded by the inflammatory cells at the inflammatory phase, followed by fibroplasia phase in which remnant of the collagen implant were still present while no inflammatory reaction could be seen in the lesions. However, the collagen implant was completely absorbed in the remodeling phase and the newly regenerated tendinous tissue filled the gap. Compared to the controls, the treated lesions showed improved tissue alignment and less peritendinous adhesion, muscle atrophy and fibrosis. They also showed significantly better clinical scoring, indices for water uptake and water absorption, and bioelectrical characteristics than the controls.

Conclusion

This novel collagen implant was biodegradable, biocompatible and possibly could be considered as a substitute for auto and allografts in clinical practice in near future.  相似文献   

5.
In order to verify the effects of CO2 laser on the palatine mucosa of rats, 15 animals were utilized. The animals were anaesthetized with thionembutal by intra-peritoneal injection and the palatine mucosa of each animal was irradiated with a single pulse of 10 W. The results showed that immediately after the irradiation of CO2 laser, the formation of small cavities is observed. The wound healing post operationem is gradually in 1 week. The region is totally occupied by neoformed connective tissue and epithelial cells. Numerous polymorphonuclear cells and fibroblasts may be seen between the neoformed collagen fibres.  相似文献   

6.
The delay procedure is known to augment pedicled skin or muscle flap survival. In this study, we set out to investigate the effectiveness of vascular delay in two rabbit muscle flap models. In each of the muscle flap models, a delay procedure was carried out on one side of each rabbit (n = 20), and the contralateral muscle was the control. In the latissimus dorsi flap model, two perforators of the posterior intercostal vessels were ligated. In the biceps femoris flap model, a dominant vascular pedicle from the popliteal artery was ligated. After the 7-day delay period, the bilateral latissimus dorsi flaps (based on the thoracodorsal vessels) and the bilateral biceps femoris flaps (based on the sciatic vessels) were elevated. Animals were divided into three groups: part A, assessment of muscle flap viability at 7 days using the tetrazolium dye staining technique (n = 7); part B, assessment of vascular anatomy using lead oxide injection technique (n = 7); and part C, assessment of total and regional capillary blood flow using the radioactive microsphere technique (n = 6). The results in part A show that the average viable area of the latissimus dorsi flap was 96 +/- 0.4 percent (mean +/- SEM) in the delayed group and 84 +/- 0.7 percent (mean +/- SEM) in the control group (p < 0.05, n = 7), and the mean viable area of the biceps femoris flap was 95 +/- 2 percent in the delayed group and 78 +/- 5 percent in the control group (p < 0.05, n = 7). In part B, it was found that the line of necrosis in the latissimus dorsi flap usually appeared at the junction between the second and third vascular territory in the flap. Necrosis of the biceps femoris flap usually occurred in the third territory, and occasionally in both the second and the third territories. In Part C, total capillary blood flow in delayed flaps (both the latissimus dorsi and biceps femoris) was significantly higher than that in the control flaps (p < 0.05). Increased regional capillary blood flow was found in the middle and distal regions, compared with the control (p < 0.05, n = 6). In conclusion, ligation of either the dominant vascular pedicle in the biceps femoris muscle flap or the nondominant pedicle in the latissimus dorsi muscle flap in a delay procedure 1 week before flap elevation improves capillary blood flow and muscle viability. Vascular delay prevents distal flap necrosis in two rabbit muscle flap models.  相似文献   

7.
Many skeletal muscles, including the feline biceps femoris, are composed of short, tapered myofibers arranged in an overlapping longitudinal series. The endomysium of such muscles transfers tension between overlapping myofibers, and is thus an elastic element in series with them. The endomysium of the cat biceps femoris contains curvilinear collagen fibrils in an approximately isotropic (random) array. The collagen fibrils undergo only a modest reorientation as the myofibers shorten or lengthen within the physiological range. A geometrical model predicts no change in the thickness of the endomysium on changing muscle fiber length and quantifies the expected collagen fibril reorientation in the endomysium as a function of muscle extension. It is also demonstrated that a high proportion of the collagen fibrils will be curvilinear at all sarcomere lengths. The organization of endomysial collagen is appropriate for the transfer of loads between myofibers by means of shear.  相似文献   

8.
Summary Intramuscular collagen in a slow (m. soleus) and a fast (m. rectus femoris) skeletal muscle was studied by biochemical, morphometric, and immunohistochemical methods. Wistar white rats of 1, 4, 10, and 24 months were used as experimental animals. Our aim was to evaluate the effects of life-long physical training (treadmill running, 5 days a week for 1, 3, 9, and 23 months depending on the age attained). The biochemical concentration of collagen was higher in m. soleus than in m. rectus femoris and it increased in youth and in old age in m. soleus. The trained rats had higher concentrations of collagen than the untrained rats at 10 and 24 months. The morphometrically measured area-fractions of both the endomysium and perimysium were higher in m. soleus than in m. rectus femoris. The age-related increase in intramuscular connective tissue was of endomysial origin. The immunohistochemical staining of type-I, -III, and -IV collagens indicated the more collagenous nature of m. soleus as compared with m. rectus femoris for all major collagen types; this was most marked for type-IV collagen of basement membrane. The results indicate that both age and endurance-type physical training further distinguish the slow and fast muscles with respect to their connective tissue.  相似文献   

9.
Intensive selection conducted within closed populations has led to the creation of specialized chicken strains that differ significantly in meat yield and reproduction performance. The effect of the selection conducted on the birds is differentiation identified not only on the molecular but also on the cellular level, among other things in the skeletal muscles. The aim of this study was to compare the structure of chosen homological skeletal muscles from Leghorn chickens (LSL), originating from parent flock, intensively selected for reproductive traits and from conservative flock (G99), unselected for many generations. The structure of musculus pectoralis superficialis and musculus biceps femoris (the thickness of the muscle fibres and the share of the fibre types in the bundle) in 8 and 20 week old chickens was compared. A significant impact of the origin on all examined slaughter parameters was recorded. Body weight before slaughter, carcass weight and the weight of breast and leg muscles in 8 weeks old LSL chicken made up from 60% to about 85% of the respective values in the G99 Leghorn. Lack of red fibres in the breast muscles of all the individuals from the parental flock (LSL) was noted, whereas in 12 individuals (among 24) from the conservative flock (G99), red fibres were observed in this muscle from 2.75% up to 7.09%. White fibres in 8 week old chicks were always thicker, both in pectoralis superficialis and biceps femoris muscle in birds with higher body weight as well as higher weight of breast and legs muscles, i.e. in chicks from conservative flock (G99), P<0.01. However, in 20 week old birds, the diameters of the white fibres were similar in both groups. Also the diameters of the red fibres in musculus biceps femoris in 8 week old chickens were higher in cockerels and pullets from conservative flock (G99).  相似文献   

10.
As part of the 2nd Berlin BedRest Study (BBR2-2), we investigated the pattern of muscle atrophy of the postero-lateral hip and hamstring musculature during prolonged inactivity and the effectiveness of two exercise countermeasures. Twenty-four male subjects underwent 60 days of head-down tilt bedrest and were assigned to an inactive control (CTR), resistive vibration exercise (RVE), or resistive exercise alone (RE) group. Magnetic resonance imaging (MRI) of the hip and thigh was taken before, during, and at end of bedrest. Volume of posterolateral hip and hamstring musculature was calculated, and the rate of muscle atrophy and the effect of countermeasure exercises were examined. After 60 days of bedrest, the CTR group showed differential rates of muscle volume loss (F = 21.44; P ≤ 0.0001) with fastest losses seen in the semi-membranosus, quadratus femoris and biceps femoris long head followed by the gluteal and remaining hamstring musculature. Whole body vibration did not appear to have an additional effect above resistive exercise in preserving muscle volume. RE and RVE prevented and/or reduced muscle atrophy of the gluteal, semi-membranosus, and biceps femoris long head muscles. Some muscle volumes in the countermeasure groups displayed faster recovery times than the CTR group. Differential atrophy occurred in the postero-lateral hip musculature following a prolonged period of unloading. Short-duration high-load resistive exercise during bedrest reduced muscle atrophy in the mono-articular hip extensors and selected hamstring muscles. Future countermeasure design should consider including isolated resistive hamstring curls to target this muscle group and reduce the potential for development of muscle imbalances.  相似文献   

11.
The effects of ageing and life-long endurance training on the collagen metabolism of skeletal muscle were evaluated in a longitudinal study. Wistar rats performed treadmill running 5 days a week for 2 years. The activities of collagen biosynthesis enzymes, prolyl-4-hydroxylase and galactosylhydroxylysyl glucosyltransferase, were highest in the muscles of the youngest animals, decreased up to the age of 2 months and from then on remained virtually unchanged. The enzyme activity in young animals was higher in the slow collagenous soleus muscle than in the rectus femoris muscle. The enzyme activity in the soleus muscle was higher for older trained rats than older untrained rats. The relative proportion of type I collagen increased and that of type III collagen decreased with age, suggesting a more marked contribution by type I collagen to the age-related accumulation of total muscular collagen. The results show that collagen biosynthesis decreases with maturation and that life-long endurance training maintains a higher level of biosynthesis in slow muscles.  相似文献   

12.
The post-exercise glycogen recovery in myocardium, liver, diaphragm muscle and musculus biceps femoris was compared in untrained and trained rats. The glycogen level in myocardium of the trained rats was significantly higher than that in the untrained ones only immediately after the exercise-test and on the second day after the exercise. The liver glycogen levels on each of the examined post-exercise days were similar in both groups and did not differ from the control values. The post-exercise glycogen recovery in the diapraghm muscle of the untrained rats was also similar to that in the trained animals. In musculus bicpes femoris similar post-exercise supercompensation was found in both groups except on the second day when the glycogen level in the trained animals was significantly higher than that in the untrained ones. The results suggest that it is necessary to separate the effects of training from those of the last bout of exercise in the training program when the effect of training is examined.  相似文献   

13.
The effects of continuous elongation of skeletal muscles were studied on six sheep who underwent a lengthening osteotomy of the right tibia. Open muscle biopsies were taken from the biceps femoris muscle preoperatively (Group A), after 5 weeks of bone distraction (Group B) and after another 5 weeks without further distraction (Group C). The size and distribution of type 1 (slow-twitch) and type 2 (fast-twitch) muscle fibres were determined from sections stained for myofibrillar ATPase activity. All sections were also evaluated by light microscopy, especially with regard to myopathic changes. The type 2 fibres showed a significant decrease in size from group A to B and from group B to C. The reduction in fibre size from group A to C was 44.2%. The type 1 fibres, on the other hand, showed no significant differences in mean fibre size between the groups. However, there were considerable individual variations in type 1 fibre size between the groups. The distribution of both fibre types was similar in groups A and B (appr. 17% type 1 fibres) whereas the relative number of type 1 fibres was reduced to 12.4% in group C (P less than 0.01). Myopathic changes, i.e. muscle fibre necroses, were not seen in any of the groups. It is concluded that the type 2 fibre atrophy is mainly caused by muscular inactivity during the postoperative period, but an additional effect of continuous stretching of the muscle cannot be excluded.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The typical "gold standard" for assessing muscle size has been magnetic resonance imaging (MRI) and computerized tomography; however, these processes are very expensive and generally require a medical facility. The advent of B-mode diagnostic ultrasound (US) can perhaps offer a quick, cost-effective method to measure muscle size. The purpose of this study was to document the reliability of B-mode US for assessing muscle size in a variety of populations. Thirty-eight postmenopausal women (avg. age = 58.9 +/- 0.7 years) had both their right rectus femoris and biceps brachii imaged, 85 older men and women (avg. age = 65.0 +/- 0.4 yrs) had their right rectus femoris imaged, and 10 young men and women (avg. age = 26.1 +/- 2.4 yrs) had their right rectus femoris imaged by both US and MRI. The location used for imaging on the right rectus femoris was a point 15 cm above to the superior border of the patella following the midline of the anterior surface of the thigh, whereas the biceps brachii was measured at maximal girth following the midline of the anterior surface of the upper arm. All trials utilizing US (Fukuda Denshi, model 4500) and a 5 Mz transducer (FUT-L104) were obtained in duplicate on 2 separate days. The young subjects that also had their rectus femoris measured by MRI were imaged with a Picker 1.5 Tesla (The Edge), which used a fast spin sequence and 192 x 256 resolution to obtain 2 5-mm-thick slices separated by a 1-mm-thick space. All intraclass correlation coefficients for the various groups and muscles measured by US ranged from r = 0.72-0.99, whereas coefficients of variation (CVs) ranged between 3.5% and 6.7%. The intraclass correlation for the MRI images was r = 0.90 and the CV was 5.2%. In conclusion, it appears that diagnostic US can provide a reliable and cost-effective alternative method for assessing muscle.  相似文献   

15.
The aim of the present study was to investigate the EMG-joint angle relationship during voluntary contraction with maximum effort and the differences in activity among three hamstring muscles during knee flexion. Ten healthy subjects performed maximum voluntary isometric and isokinetic knee flexion. The isometric tests were performed for 5 s at knee angles of 60 and 90 degrees. The isokinetic test, which consisted of knee flexion from 0 to 120 degrees in the prone position, was performed at an angular velocity of 30 degrees /s (0.523 rad/s). The knee flexion torque was measured using a KIN-COM isokinetic dynamometer. The individual EMG activity of the hamstrings, i.e. the semitendinosus, semimembranosus, long head of the biceps femoris and short head of the biceps femoris muscles, was detected using a bipolar fine wire electrode. With isometric testing, the knee flexion torque at 60 degrees knee flexion was greater than that at 90 degrees. The mean peak isokinetic torque occurred from 15 to 30 degrees knee flexion angle and then the torque decreased as the knee angle increased (p<0.01). The EMG activity of the hamstring muscles varied with the change in knee flexion angle except for the short head of the biceps femoris muscle under isometric condition. With isometric contraction, the integrated EMGs of the semitendinosus and semimembranosus muscles at a knee flexion angle of 60 degrees were significantly lower than that at 90 degrees. During maximum isokinetic contraction, the integrated EMGs of the semitendinosus, semimembranosus and short head of the biceps femoris muscles increased significantly as the knee angle increased from 0 to 105 degrees of knee flexion (p<0.05). On the other hand, the integrated EMG of the long head of the biceps femoris muscle at a knee angle of 60 degrees was significantly greater than that at 90 degrees knee flexion with isometric testing (p<0.01). During maximum isokinetic contraction, the integrated EMG was the greatest at a knee angle between 15 and 30 degrees, and then significantly decreased as the knee angle increased from 30 to 120 degrees (p<0.01). These results demonstrate that the EMG activity of hamstring muscles during maximum isometric and isokinetic knee flexion varies with change in muscle length or joint angle, and that the activity of the long head of the biceps femoris muscle differs considerably from the other three heads of hamstrings.  相似文献   

16.
Two trials were conducted to investigate the effect of corticosterone (CORT) on protein metabolism and the amino acid composition in muscle tissues of broiler chickens (Gallus gallus domesticus). In Trial 1, two groups of 30 broiler chickens were subjected to control or CORT treatment (30 mg/kg diet) from 28 to 39 days of age. In Trial 2, three groups of chickens of 28 days of age were randomly subjected to one of the following treatments for 7 days: CORT (30 mg/kg diet), pair-fed (maintaining the same feed intake as CORT treatment) and control treatments. The body mass gain and feed efficiency was significantly decreased by CORT treatment, while the food intake was decreased. The breast and thigh masses (% body mass) were significantly suppressed by CORT treatment, while the abdominal fat and liver masses (%) were obviously increased. The plasma levels of glucose, urate and total amino acid were significantly elevated by CORT treatment. The capacity for protein synthesis, estimated by RNA:protein ratio, were significantly suppressed by CORT in M. pectoralis major and M. biceps femoris. The 3-methylhistidine concentrations were significantly increased in both M. pectoralis major and M. biceps femoris of CORT chickens, compared to control but not the pair-fed chickens. The amino acid composition of M. pectoralis major and M. biceps femoris was not significantly affected by CORT treatment. In conclusion, the arrested growth in skeletal muscles induced by CORT administration has tissue specificity. The CORT treatment retards the growth of skeletal muscle by suppressed protein synthesis and augmented protein catabolism.  相似文献   

17.
The single-stage technique for cross-face reanimation of the paralyzed face without nerve graft is an improvement over the two-stage procedure because it results in early reinnervation of the transferred muscle and shortens the period of rehabilitation. On the basis of an anatomic investigation, the short head of the biceps femoris muscle with attached lateral intermuscular septum of the thigh was identified as a new candidate for microneurovascular free muscle transfer. The authors performed one-stage transfer of the short head of the biceps femoris muscle with a long motor nerve for reanimation of established facial paralysis in seven patients. The dominant nutrient vessels of the short head were the profunda perforators (second or third) in six patients and the direct branches from the popliteal vessels in one patient. The recipient vessels were the facial vessels in all cases. The length of the motor nerve of the short head ranged from 10 to 16 cm, and it was sutured directly to several zygomatic and buccal branches of the contralateral facial nerve in six patients. One patient required an interpositional nerve graft of 3 cm to reach the suitable facial nerve branches on the intact side. The period required for initial voluntary movement of the transferred muscles ranged from 4 to 10 months after the procedures. The period of postoperative follow-up ranged from 5 to 42 months. Transfer of the vascularized innervated short head of the biceps femoris muscle is thought to be an alternative for one-stage reconstruction of the paralyzed face because of the reliable vascular anatomy of the muscle and because it allows two teams to operate together without the need to reposition the patient. The nerve to the short head of the biceps femoris enters the side opposite the vascular pedicle of the muscle belly, and this unique relationship between the vascular pedicle and the motor nerve is anatomically suitable for one-stage reconstruction of the paralyzed face. As much as to 16 cm of the nerve can be harvested, and the nerve is long enough to reach the contralateral intact facial nerve in almost all cases. The lateral intermuscular septum, which is attached to the short head, provides "anchor/suture-bearing" tissue, allowing reliable fixations to the zygoma and the upper and lower lips to be achieved. In addition, the scar and deformity of the donor site are acceptable, and loss of this muscle does not result in donor-site dysfunction.  相似文献   

18.
Histochemical and ultrastructural studies of the muscle coat of the oesophagus from ICRC/HiCri mice (with megaoesophagus) and DBA/2fNCri mice (normal oesophagus) were carried out. The striking observation from histochemical studies was the presence of smooth muscle in the abdominal segment of the oesophagus from ICRC mouse in contrast to the control strain where smooth muscle was present only in the lowermost portion adjoining the stomach. Ultrastructural studies of the oesophageal wall from 5- and 10-day-old ICRC mice revealed an apparently normal muscle coat. In 3-month-old ICRC mice the upper abdominal segment of the oesophagus showed several abnormalities of smooth muscle fibres and paucity of plexus tissue accompanied by interstitial collagen deposition. The abnormalities were more severe in 1-year-old animals and were seen throughout the abdominal segment. From this study it is suggested that the primary cause of megaoesophagus in ICRC mice is neurogenic and not myogenic.  相似文献   

19.
In the present study the effect of thyroxine treatment on the development of cardiomegaly was compared in young (10-day-old) and adult (12-week-old) rats. L-thyroxine was administered subcutaneously in a dose of 1 mg per kg b.w. for 5 days. In young thyroxine-treated rats the heart weight increased by 79% in comparison with the control rats. The number of blood capillaries and muscle fibres per mm2 remained unchanged. The concentration of hydroxyproline was even lower than in control animals. The number of 3H-thymidine-labelled muscle cell nuclei was significantly higher both in the left and right ventricles of thyroxine treated rats. The density of capillaries and muscle fibres was significantly lower in adult rats than in the group of young animals. In adult thyroxine-treated animals the heart weight was higher by 36%, the number of capillaries and muscle fibres as well as the concentration of hydroxyproline was unchanged. Thyroxine induced significant increase in the number of DNA synthesizing nuclei of muscle cells in the left ventricle while the change in the right ventricular myocardium was not statistically significant. The present data indicate that a hyperplastic response of cardiac muscle cells to thyroxine occurs in both ventricles of young rats and also in the left ventricle of adult animals.  相似文献   

20.
The effects of neuromuscular blocking drugs on the development of slow and fast muscle fibres and their neuromuscular junctions was studied in chick embryos.
Treatment of embryos with the depolarizing neuromuscular blocking agent suxamethonium affected the development of muscle fibres of the slow anterior latissimus dorsi (ALD) muscle more than that of muscle fibres of the posterior latissimus dorsi (PLD). The differentiation of the presynaptic elements of the neuromuscular junction was delayed and this was particularly obvious in PLD. Normally the number of axon profiles at individual endplates is reduced by 18 days of incubation, but in suxamethonium treated embryos this reduction took place only at 21 days. During earlier stages of development the axon profiles from treated embryos were small with sparse synaptic vesicles. Nevertheless the subsynaptic site of endplates on ALD and PLD muscle fibres became specialized earlier than normal and to a greater extent. Treatment with hemicholinium (HC-3), a drug that reduces the synthesis of acetylcholine (ACh) in nerve terminals affected the development of PLD muscle fibres more than ALD muscle fibres. Although in HC-3 treated embryos nerve-muscle contacts were formed, the axon terminals look immature and remain small even in 18-day old embryos at both ALD and PLD muscle fibres. The reduction of the number of axon profiles normally seen at 18 days failed to take place in treated embryos. At 18 days of incubation many endplates on PLD muscle fibres showed little sign of postsynaptic specilization and resembled endplates usually seen at this stage on ALD muscle fibres.
It is concluded that while neuromuscular activity may be important for the reduction of the number of axon profiles at individual endplates, the specialization of the subsynaptic membrane is brought about by depolarizing effect of ACh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号