首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By use of a quench-flow technique to measure tracer ion flux rates in a physiologically significant time domain, the kinetics of activation and inactivation of purified reconstituted acetylcholine receptor (AChR) were investigated. After solubilization in sodium cholate, purification by affinity chromatography, and reconstitution into soybean lipids, the AChR from Torpedo californica displayed a characteristically fast rate of ion influx measured with 86Rb+. At 4 degrees C 1 mM carbamoylcholine (Carb) stimulated a fast (t1/2 = 7 ms) first-order filling of vesicle internal volume that presented a 10(4)-fold stimulation of ion flux rate by Carb. The concentration dependence of activation was sigmoidal with a half-maximal value at 3 X 10(-4) M Carb. In the presence of Carb, the purified AChR also underwent a two-step inactivation (desensitization) process. Inactivation was measured by preincubating AChR with Carb for various times (milliseconds to minutes) and then measuring the 86Rb+ influx rate. The two inactivation processes were each characterized by a distinct maximum rate (5.3 and 0.10 s-1) and by a different dependence on Carb concentration. The slow phase of inactivation gave a half-maximal rate at 2.5 X 10(-4) M Carb, and the fast inactivation was half-maximal at 1.3 X 10(-3) M Carb. The concentration dependence curves for both inactivation processes were approximately hyperbolic. The results are discussed in terms of models that describe the relationship between ligand binding and the processes of channel activation and desensitization.  相似文献   

2.
Affinity-labeling of purified acetylcholine receptor from Torpedo californica   总被引:22,自引:0,他引:22  
The receptor for acetylcholine purified from electric tissue of Torpedo californica has been assayed both by affinity-alkylation and by neurotoxin binding. The specific activity by the latter method is about twice that by the former. Four major components of apparent molecular weights of 39,000, 48,000, 58,000 and 64,000 are separated by dodecyl sulfate-acrylamide gel electrophoresis. Reduction and affinity-alkylation of the receptor with a tritiated quaternary ammonium maleimide derivative results in the exclusive labeling of the 39,000 dalton subunit. This subunit, it is concluded, contains all or part of the acetylcholine binding site.  相似文献   

3.
4.
Amines with local anesthetic activity are typically also noncompetitive inhibitors of the agonist-induced increase in cation permeability mediated by the nicotinic acetylcholine receptor. Quinacrine is such an agent, and we have synthesized tritiated quinacrine mustard, a derivative capable of reacting with nucleophiles. Quinacrine mustard was reacted with receptor-rich membrane from torpedo electric tissue, excess reagent was removed by partition into liposomes, and the modified receptor was extracted and reconstituted with exogenous phospholipid. After reaction of the native membrane with 10 microM quinacrine mustard for 5 min, binding of cobratoxin to the acetylcholine binding sites is inhibited 15%; in contrast, receptor-mediated 86Rb uptake in the reconstituted vesicles is inhibited 70%. When the reaction with quinacrine mustard is carried out in the presence of 10 microM carbamylcholine or 10 microM d-tubocurarine, there is no block of the acetylcholine binding sites; nevertheless, the inhibition of Rb uptake is greater than that resulting from reaction in the absence of acetylcholine binding site ligands. Conversely, when the reaction is carried out in the presence of either 100 microM quinacrine or 100 microM proadifen (also a potent noncompetitive inhibitor), either with or without carbamylcholine or d-tubocurarine, the inhibition of 86Rb uptake is about 70% smaller. Under the same conditions that we used in the functional studies, quinacrine mustard reacts with the four types of chains that constitute the receptor complex, alpha 2 beta gamma delta. The presence of the acetylcholine binding site ligands, however, results in increased reaction with the alpha and beta chains, while the presence of the noncompetitive inhibitors, with or without the acetylcholine binding site ligands, results in decreased reaction with the alpha and beta chains. We conclude that the alpha and beta chains contribute to one or more functionally significant binding sites for noncompetitively inhibiting amines.  相似文献   

5.
6.
The effects of local anesthetics on the rate of the agonist-induced increase in ligand affinity of membrane-bound acetylcholine receptor from Torpedo californica were examined. The rate of the transition in receptor affinity was determined by following the time-dependent increase in inhibition of iodinated alpha-bungarotoxin binding caused by 1 microM carbamylcholine. At concentrations below those that directly inhibited the binding of iodinated alpha-bungarotoxin, dibucaine increased the rate of the transition to a high-affinity state and tetracaine decreased this rate. The measured rate constants were 0.026 +/- 0.008 s-1 in the presence and 0.010 +/- 0.002 s-1 in the absence of dibucaine while tetracaine decreased the rate to 0.006 +/- 0.002 s-1 as compared to a control value of 0.012 +/- 0.003 s-1. A parallel was observed between the effectiveness of a compound in increasing or decreasing the rate of the agonist-induced transition in affinity and the change in its apparent inhibition constant in the presence of carbamylcholine (increase or decrease) measured by the displacement of tritiated perhydrohistrionicotoxin. This parallel could be explained by assuming (a) that local anesthetics bound directly to the specific histrionicotoxin binding site or (b) that they bound to a different site and the observed effects were caused by conformational changes.  相似文献   

7.
The immunological structure of the acetylcholine receptor (AChR) from the electric organ of Torpedo californica was studied using a large number of monoclonal antibodies which were initially selected for their abilities to bind to intact AChRs. The monoclonal antibodies were tested for their ability to bind to denatured AChR subunits labeled with 125I. Antibodies derived from rats immunized with individual denatured subunits or a mixture of subunits of Torpedo AChR reacted well in the assay. A much smaller proportion of antibodies derived from rats immunized with native Torpedo AChR or native AChR from Electrophorus electricus electric organ, bovine muscle, or human muscle reacted with denatured subunits of Torpedo AChR. Many monoclonal antibodies reacted with more than one subunit, but they always reacted best with the subunit used for immunization. Those monoclonal antibodies that bound to intact subunits were mapped more precisely by their ability to bind characteristic fragments of each subunit generated by proteolysis with Staphylococcal V8 protease. These fragments were analyzed by SDS polyacrylamide gel electrophoresis, and monoclonal antibodies that precipitated the same fragment pattern were placed in groups. By this method, we define a minimum of 28 determinants on Torpedo AChR.  相似文献   

8.
When isolated, detergent solubilized and affinity chromatographically purified nicotinic acetylcholine receptor of Torpedo californica electric organ is incubated with [gamma-32P]ATP/Mg2+, phosphatidylinositol 4-phosphate (PIP) is formed from receptor associated phosphatidylinositol (PI). This receptor associated endogenous kinase activity is enhanced by orthovanadate and, remarkably, also by acetylcholine. Exogenously added PI-kinase only increases the phosphorylation rate if vanadate is present. PIP as the main phosphorylation product (up to 95%) remains bound to the beta-, gamma- and delta-subunits of the receptor and to the receptor associated v-protein. The alpha-subunits do not carry 32p phosphate; no phosphatidylinositol 4,5-bisphosphate formation has been observed. Concomitant to lipid phosphorylation tyrosine and serine residues are phosphorylated (5% of total incorporated 32P phosphate).  相似文献   

9.
The effects of the five Group I monovalent ions, Li, Na, K, Rb, and Cs, on [3H]acetylcholine binding to Triton X-100 solubilized acetylcholine receptor from Torpedo californica electroplax were examined. Acetylcholine binding was not greatly affected by Li or Na, but was inhibited by the other ions in the order Cs > Rb > K. The inhibition by K appeared to occur by a mechanism identical to that for d-tubocurarine inhibition of acetylcholine binding.  相似文献   

10.
A time-dependent increase in ligand affinity has been studied in cholinergic ligand binding to Torpedocalifornica acetylcholine receptor by inhibition of the kinetics of of [125I]-alpha-bungarotoxin-receptor complex formation. The conversion of the acetylcholine receptor from low to high affinity form was induced by both agonists and antagonists of acetylcholine and was reversible upon removal of the ligand. The slow ligand induced affinity change in vitro resembled electrophysiological desensitization observed at the neuromuscular junction and described by a two-state model (Katz, B., & Thesleff, S. (1957) J. Physiol. 138, 63). A quantitative treatment of the rate and equilibrium constants determined for binding of the agonist carbamoylcholine to membrane bound acetylcholine receptor indicated that the two-state model is not compatible with the in vitro results.  相似文献   

11.
Measurement of small-angle X-ray scattering from a sample of hyaluronic acid of high molecular weight in 0.05 m HNO3 gave persistence length plots which agreed in form with theory and led to apparent persistence lengths of from 4 to 6 nm. Similar measurements in 0.2 m NaCl gave plots which deviated somewhat in form from theoretical expectation, but which could be interpreted to give a persistence length of 4 nm in this solvent. Data for intrinsic viscosity [η] as a function of molecular weight were in reasonable agreement with the Yamakawa-Fujii treatment of [η] for the worm-like chain model for a persistence length of about 4 nm in both 0.5 m NaCl and 0.1 m HCl, perhaps slightly higher in the latter. The values of persistence length estimated from [η] depend somewhat on the choice of chain parameters and the method of correction of experimental data to unperturbed solvent conditions. Experimental data for the sedimentation coefficient, while less definitive, were consistent within experimental uncertainty with the same parameters of the worm-like chain model. These calculated results are in substantial agreement with the values derived from small-angle X-ray scattering. A fraction of hyaluronic acid of low molecular weight in 0.05 m HNO3 gave an estimated molecular weight of 2.7 × 104 and a radius of gyration of 8 nm, in reasonable agreement with expected values based on the worm-like chain model for a persistence length of about 4 nm.  相似文献   

12.
The lipid requirements of the Torpedo californica nicotinic acetylcholine receptor (nAChR) were assessed by reconstituting purified receptors into lipid vesicles of defined composition and by using photolabeling with 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID) to determine functionality. Earlier studies demonstrated that nAChRs reconstituted into membranes containing phosphatidylcholine (PC), the anionic lipid phosphatidic acid (PA), and cholesterol (CH) are particularly effective at stabilizing the nAChR in the resting (closed) state that is capable of undergoing agonist-induced conformational transitions (i.e., functionality). The present studies demonstrate that (1) there is no obligatory requirement for PC, (2) increasing the CH content serves to increase the degree to which nAChRs are stabilized in the resting state, and this effect saturates at approximately 35 mol % (molar lipid percentage), and (3) the effect of increasing levels of PA saturates at approximately 12 mol % and in the absence of PA nAChRs are stabilized in the desensitized state (i.e., nonfunctional). Native Torpedo membranes contain approximately 35 mol % CH but less than 1 mol % PA, suggesting that other anionic lipids may substitute for PA. We report that (1) phosphatidylserine (PS) and phosphatidylinositol (PI), anionic lipids that are abundant in native Torpedo membranes, also stabilize the receptor in the resting state although with reduced efficacy (approximately 50-60%) compared to PA, and (2) for nAChRs reconstituted into PA/CH membranes at different lipid-protein molar ratios, receptor functionality decreases rapidly below approximately 65 lipids per receptor. Collectively, these results are consistent with a functional requirement of a single shell of lipids surrounding the nAChR and specific anionic lipid- and sterol (CH)-protein interactions.  相似文献   

13.
We investigated the differential repair of DNA lesions induced by bifunctional mitomycin C, monofunctional decarbamoyl mitomycin C and ultraviolet irradiation in normal human, Xeroderma pigmentosum and Fanconi's anemia cells using assays for the survival of clone-forming ability, alkaline sucrose sedimentation and hydroxyapatite chromatography of DNA. Four FA cell lines exhibited about 5 to 15 times higher sensitivity to MC killing, despite normal resistance to u.v. and DMC, than did normal human cells. The XP cells, however, were highly sensitive to u.v. and DMC killings due to their deficiency in excision repair, but the cells unexpectedly had an almost normal capacity for surviving MC and repairing the MC interstrand cross-links.In experiments to determine the sedimentation velocity of the DNA in alkaline sucrose gradients, normal and XP cells showed evidence for single-strand cutting following MC treatment. The sedimentation velocity of the DNA covalently cross-linked by MC in an FA strain was 2.5 times faster than that of the untreated control, and remained unaltered during post-incubation due to the lack of half-excision4 of cross-links. However, FA cells, but not XP cells, had the normal ability to incise DNA with the DMC monoadducts. Hydroxyapatite chromatography revealed the reversibly bihelical property of MC cross-linked DNA after denaturation. Normal and XP cells lost such reversibility during post-MC incubation as the result of cross-link removal with first-order kinetics (half-life = 2 h). The three FA lines studied exhibited two- to eightfold reduced rates of cross-link removal than normal and XP cells, indicating a difference in the repair deficiency of the FA strain. Thus we have been led to conclude that FA cells may have different levels of deficiency in half-excision repair of interstrand cross-links induced by MC, despite having normal mechanisms for repair of u.v.-induced pyrimidine dimers and DMC monoadducts, and vice versa in XP cells.  相似文献   

14.
The effects of thio-group modifications on the ion permeability control and ligand binding properties of the acetylcholine receptor were measured in reconstituted membranes prepared from purified Torpedo californica acetylcholine receptor and soybean lipids (asolectin). A quench flow device was used to obtain subsecond time resolution for agonist-stimulated cation influx using carbamylcholine chloride (Carb) as the ligand and 86Rb+ as the cation. The effects of disulfide reduction with dithiothreitol (DTT), affinity alkylation with [4-(N-maleimido)benzyl]trimethylammonium ion and bromoacetylcholine, and nonspecific alkylation with N-ethylmaleimide and N-benzylmaleimide were examined. Activation, fast inactivation, and slow inactivation rates were measured on the chemically modified membranes. The flux results were compared with similar measurements on native membranes, and the role of vesicle size, heterogeneity, and influx time on ion flux results was analyzed. Major conclusions are that the binding sites that react with affinity labels are the same sites that mediate ligand-activated ion flux and that blockade of one of the two ligand binding sites is sufficient to block about 95% of the ion flux response. The main effect of DTT reduction is to shift the EC50 values for activation and slow inactivation to higher Carb concentrations, consistent with a decrease in binding affinity for Carb. The EC50 value for fast inactivation was not affected by DTT. However, the maximum rate of ion flux activation and the maximum rate of fast inactivation were decreased 2-fold after DTT treatment.  相似文献   

15.
Acetylcholine receptor from Torpedo californica electric tissue occurs in membrane, and is purified, as a mixture of monomer and dimer. Dimer is cross-linked by disulfide bonds involving one of the four polypeptide components of receptor, namely the one of apparent molecular weight of 64,000.  相似文献   

16.
Song XZ  Andreeva IE  Pedersen SE 《Biochemistry》2003,42(14):4197-4207
Fluorescent energy transfer measurements of dansyl-C6-choline binding to the nicotinic acetylcholine receptor (AChR) from Torpedo californica were used to determine binding characteristics of the alpha gamma and alpha delta binding sites. Equilibrium binding measurements show that the alpha gamma site has a lower fluorescence than the alpha delta site; the emission difference is due to differences in the intrinsic fluorescence of the bound fluorophores rather than differences in energy transfer at the two sites. Stopped-flow fluorescence kinetics showed that dissociation of dansyl-C6-choline from the AChR in the desensitized conformation occurs 5-10-fold faster from the alpha gamma site than from the alpha delta site. The dissociation rates are robust for distinct protein preparations, in the presence of noncompetitive antagonists, and over a broad range of ionic strengths. Equilibrium fluorescent binding measurements show that dansyl-C6-choline binds with higher affinity to the alpha delta site (K = 3 nM) than to the alpha gamma site (K = 9 nM) when the AChR is desensitized. Similar affinity differences were observed for acetylcholine itself. The distinct dissociation rates permit the extent of desensitization to be measured at each site during the time course of binding. This sequential mixing method of measuring the desensitized state population at each agonist site can be applied to study the mechanism of AChR activation and subsequent desensitization in detail.  相似文献   

17.
Tryptic digestion of acetylcholine receptor (AChR) from Torpedo californica did not change the pharmacological specificity and the pathological myasthenic acitivity of the receptor molecule. The product obtained after tryptic digestion was repurified by affinity chromatography on a toxin-Sepharose resin and was designated T-AChR. T-AChR has a sedimentation coefficient of 8.0S and in SDS acrylamide gel electrophoresis shows one major band with a molecular weight of 27,000. Immunological studies reveal that T-AChR binds to anti-AChR antibodies directed only against conformational antigenic determinants.  相似文献   

18.
Protease digestion of acetylcholine receptor-rich membranes derived from Torpedo californica electroplaques by homogenization and isopycnic centrifugation results in degradation of all receptor subunits without any significant effect on the appearance in electron micrographs, the toxin binding ability, or the sedimentation value of the receptor molecule. Such treatment does produce dramatic changes in the morphology of the normally 0.5- to 2-microns-diameter spherical vesicles when observed by either negative-stain or freeze-fracture electron microscopy. Removal of peripheral, apparently nonreceptor polypeptides by alkali stripping (Neubig et al. 1979, Proc. Natl. Acad. Sci. U. S. A. 76:690-694) results in increased sensitivity of the acetylcholine receptor membranes to the protease trypsin as indicated by SDS gel electrophoretic patterns and by the extent of morphologic change observed in vesicle structure. Trypsin digestion of alkali- stripped receptor membranes results in a limit degradation pattern of all four receptor subunits, whereupon all the vesicles undergo the morphological transformation to minivesicles. The protein-induced morphological transformation and the limit digestion pattern of receptor membranes are unaffected by whether the membranes are prepared so as to preserve the receptor as a disulfide bridged dimer, or prepared so as to generate monomeric receptor.  相似文献   

19.
M P Blanton  J B Cohen 《Biochemistry》1992,31(15):3738-3750
To identify regions of the Torpedo nicotinic acetylcholine receptor (AchR) interacting with membrane lipid, we have used 1-azidopyrene (1-AP) as a fluorescent, photoactivatable hydrophobic probe. For AchR-rich membranes equilibrated with 1-AP, irradiation at 365 nm resulted in covalent incorporation in all four AchR subunits with each of the subunits incorporating approximately equal amounts of label. To identify the regions of the AchR subunits that incorporated 1-AP, subunits were digested with Staphylococcus aureus V8 protease and trypsin, and the resulting fragments were separated by SDS-PAGE followed by reverse-phase high-performance liquid chromatography. N-terminal sequence analysis identified the hydrophobic segments M1, M3, and M4 within each subunit as containing the sites of labeling. The labeling pattern of 1-AP in the alpha-subunit was compared with that of another hydrophobic photoactivatable probe, 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID). The nonspecific component of [125I]TID labeling [White, B., Howard, S., Cohen, S. G., & Cohen, J.B. (1991) J. Biol. Chem. 266, 21595-21607] was restricted to the same regions as those labeled by 1-AP. The [125I]TID residues labeled in the hydrophobic segment M4 were identified as Cys-412, Met-415, Cys-418, Thr-422, and Val-425. The periodicity and distribution of labeled residues establish that the M4 region is alpha-helical in nature and indicate that M4 presents a broad face to membrane lipid.  相似文献   

20.
S C Froehner  S Rafto 《Biochemistry》1979,18(2):301-307
The acetylcholine receptor from Torpedo californica electroplax was purified approximately 100-fold by affinity chromatography on alpha-neurotoxin-Sepharose 6B. Four putative subunits (alpha, beta, gamma, delta) of apparent molecular weights of 43,000, 52,000, 58,000, and 63,000 were found when the purified material was analyzed by sodium dodecyl sulfate (NaDodSO4) gel electrophoresis. In some preparations, however, the amount of the gamma polypeptide was small. The presence of N-ethylmaleimide throughout the purification procedure greatly enhanced the amount of the gamma chain. To investigate the possibility that the putative subunits may be structurally related, they were isolated by preparative NaDodSO4 gel electrophoresis and subjected to peptide mapping analyses. The patterns of fragments generated by Staphylococcus aureus V8 protease, papain, or chymotrypsin were different for each of the polypeptides. Thus, it is unlikely that they are derivatives of each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号