首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The receptors for insulin and epidermal growth factor possess tyrosine-specific protein kinase activity which may play a role in mediating the biological actions of these two peptides. We have identified a 120 kDa glycoprotein (pp120) in rat liver plasma membranes which can be phosphorylated by the insulin receptor in a cell-free system and in intact cultured hepatoma cells. In the present report, we have demonstrated in a cell-free system that solubilized epidermal growth factor receptors can phosphorylate tyrosine residues in pp120.  相似文献   

2.
The EGF-like membrane protein dlk plays a crucial role in the control of cell differentiation. Overexpression of the protein prevents, whereas inhibition of its expression increases, adipocyte differentiation of 3T3-L1 cells in response to Insulin-like Growth Factor I (IGF-1) or insulin. We have investigated whether dlk modulates the signaling pathways known to control this process. We found that the levels of dlk expression modulated signaling through the IGF-1 receptor, causing changes in the activation levels and kinetics of Extracellular-Regulated Kinase/Mitogen-Activated Protein Kinase (ERK/MAPK) that correlated with differentiation outcome. These changes occurred in response to IGF-1 or insulin but not in response to Epidermal Growth Factor. However, the levels of expression of IGF-1 receptor, or the activation of Insulin Receptor Substrate-1 in response to IGF-1, were not affected by the levels of dlk expression. Therefore, dlk appears to modulate ERK/MAPK signaling in response to specific differentiation signals.  相似文献   

3.
Glucocorticoids regulate the trafficking of mouse mammary tumor virus (MMTV) glycoproteins to the cell surface in the rat hepatoma cell line M1.54, but not in the immunoselected sorting variant CR4. To compare the localization of MMTV glycoproteins to another proteolytically processed glycoprotein, both wild type M1.54 cells and variant CR4 cells were transfected with a human insulin receptor (hIR) expression vector, pRSVhIR. The production of cell surface hIR was monitored in dexamethasone-treated and -untreated wild type M1.54 and variant CR4 cells by indirect immunofluorescence, direct plasma membrane immunoprecipitation, and by [125I] insulin binding. In both wild type and variant rat hepatoma cells, hIR were localized at the cell surface in the presence or in the absence of 1 microM dexamethasone. In contrast, the glucocorticoid-regulated trafficking of cell surface MMTV glycoproteins occurred only in wild type M1.54 cells. We conclude that the hIR, which undergoes posttranslational processing reactions similar to MMTV glycoproteins, does not require glucocorticoids to be transported to the plasma membrane and is representative of a subset of cell surface glycoproteins whose trafficking is constitutive in rat hepatoma cells. Thus, MMTV glycoproteins and hIR provide specific cell surface markers to characterize the glucocorticoid-regulated and constitutive sorting pathways.  相似文献   

4.
A 230 KDa species of Nerve Growth Factor (NGF) receptor was immunoprecipitated from EcoRI-digested chromatin of melanoma cells using a monoclonal antibody to the 75 KDa cell surface NGF receptor. The chromatin NGF receptor was shown to exist tightly bound to DNase II-sensitive sequences which, upon growth factor binding, became resistant to DNase II digestion.  相似文献   

5.
IGF-2 stimulated growth mediated by the somatomedin type 2 receptor   总被引:6,自引:0,他引:6  
Human Insulinlike Growth Factor 2 (IGF-2) can promote cell proliferation via the type 2 receptor in K562 cells, a human erythroleukemia cell line with IGF-2/type 2 receptors and insulin receptors but lacking IGF-1/type 1 receptors. Cells are grown in semi-solid agar in the absence and presence of increasing amounts of insulin, IGF-1 and IGF-2. Two strains of K562 cells have been studied, with different concentrations of insulin and IGF-2 receptors. The effect of IGF-2 is proportional to the IGF-2 receptor concentration.  相似文献   

6.
7.
Insulin was observed to modulate the growth and the phosphoenolpyruvate carboxykinase (PEPCK) activity of primary cultures of rabbit renal proximal tubule cells in serum free medium. Insulin was stimulatory to primary proximal tubule cell growth at a concentration of 10(-8) M. In contrast, insulin was inhibitory to a proximal tubule function, PEPCK activity, following a 5-minute incubation period. An insulin dosage as low as 10(-10) M was inhibitory to PEPCK activity, suggesting the involvement of insulin receptors. Although insulin was required at a significantly higher dosage to stimulate the growth of the primary renal proximal tubule cells than to inhibit PEPCK activity, the elevated dosage required in order to observe a growth effect may be explained by the degradation of insulin by the primary renal proximal tubule cells. However the possible involvement of receptors for Insulin-like Growth Factor I (IGF-I) and Insulin-like Growth Factor II (IGF-II) in mediating the effects of insulin cannot be excluded. Other effector molecules were also examined with respect to their effects on PEPCK activity. The possible involvement of cyclic AMP in the control of the PEPCK activity of the primary renal cells was indicated by the stimulatory effects of 8 bromocyclic AMP, isobutyl methylxanthine (a cyclic AMP phosphodiesterase inhibitor), and forskolin (an activator of adenylate cyclase). Phorbol 12-myristate 13-acetate (TPA), which activates protein kinase C, was inhibitory. The actions of these effector molecules and insulin on the PEPCK activity of the primary renal cultures are remarkably similar to their effects on hepatic PEPCK. Several growth factors, fibroblast growth factor (FGF), and transforming growth factor beta (TGF beta) were also examined. FGF was observed to be stimulatory, whereas TGF beta was inhibitory to the PEPCK activity of the primary renal proximal tubule cells.  相似文献   

8.
Insulin-induced tyrosine-phosphorylation in intact rat adipocytes   总被引:4,自引:0,他引:4  
Insulin-induced tyrosine-phosphorylation in intact isolated rat adipocytes was studied using immunoblotting method with antiphosphotyrosine antibodies. Insulin-stimulated adipocytes were solubilized with Triton X-100. The lysate was incubated with wheat germ agglutinin, then with hydroxylapatite. Insulin stimulated tyrosine-phosphorylation of a 95 KDa protein which adsorbs to wheat germ agglutinin and appears to be the beta-subunit of the insulin receptor. Among the proteins adsorbed to hydroxylapatite, tyrosine-phosphorylation of 170 KDa and 60 KDa proteins was stimulated. 170 KDa was also stimulated by polyclonal anti-insulin receptor antibodies B-10 Ig G, IGF-I and H2O2. The detection of these proteins in rat adipocytes may lead to the elucidation of a common signal transduction pathway in insulin-responsive cells.  相似文献   

9.
Using the synthetic peptide substrate Kemptide and cytosolic extracts of mouse fibroblasts transfected with a human insulin receptor cDNA construct, we have studied an insulin-sensitive serine kinase activity. This activity is rapidly stimulated by insulin (maximum within 5 min) and also by orthovanadate. During cell extract preparation, paranitrophenylphosphate and phosphotyrosine are able to preserve the enzyme activity, while phosphothreonine and phosphoserine fail to do so. Using antiphosphotyrosine antibodies, specific immunoprecipitation of this insulin- and orthovanadate-sensitive serine kinase was obtained. We then analysed by gel filtration chromatography eluates containing tyrosine-phosphorylated proteins obtained from unstimulated, insulin- and vanadate-treated cells. We found that several activities, with molecular weights estimated to be 30 kDa and smaller, are stimulated by both, insulin and orthovanadate. As a whole, our data indicate that insulin and orthovanadate enhance the cytosolic content in at least 2 or 3 phosphotyrosine-containing serine kinase activities.Abbreviations EGF Epidermal Growth Factor - IGF I Insulin-like Growth Factor I - PDGF Platelet-Derived Growth Factor - DMEM Dulbecco's Modified Eagle's Medium - FCS Fetal Calf Serum - PBS Phosphate Buffered Saline - PNPP Para-nitrophenylphosphate - BSA Bovine Serum Albumin - -Tyr Antiphosphotyrosine Antibodies - MAP 2 Microtubule-Associated Protein 2 - Hepes N-(2-hydroxyethyl)piperazine-N-2-ethanesulfonic acid - EDTA Ethylenediamine Tetraacetic Acid - DTT Dithiothreitol - SDS-PAGE Sodium Dodecyl Sulfate/Polyacrylamide Gel Electrophoresis - EGTA [Ethylenebis(oxyethylenenitrilo)] Tetraacetic Acid - TRIS Tris(hydroxymethyl)-Aminoethane - IRSK Insulin Receptor-Associated Serine Kinase - KIK Kemptide Insulin-stimulated Kinase  相似文献   

10.
In vitro differentiation of human mesenchymal stem cells to epithelial lineage   总被引:12,自引:0,他引:12  
Our study examined whether human bone marrow-derived MSCs are able to differentiate, in vitro, into functional epithelial-like cells. MSCs were isolated from the sternum of 8 patients with different hematological disorders. The surface phenotype of these cells was characterized.To induce epithelial differentiation, MSCs were cultured using Epidermal Growth Factor, Keratinocyte Growth Factor, Hepatocyte Growth Factor and Insulin-like growth Factor-II. Differentiated cells were further characterized both morphologically and functionally by their capacity to express markers with specificity for epithelial lineage. The expression of cytokeratin 19 was assessed by immunocytochemistry, and cytokeratin 18 was evaluated by quantitative RT-PCR (Taq-man). The data demonstrate that human MSCs isolated from human bone marrow can differentiate into epithelial-like cells and may thus serve as a cell source for tissue engineering and cell therapy of epithelial tissue.  相似文献   

11.
Insulin-like growth factor (IGF)-I constitutively present in the skin is one of the first growth factors that Leishmania parasites encounter after transmission to the vertebrate host. We have previously shown that IGF-I is a potent growth-promoting factor for Leishmania parasites. IGF-I binds specifically to a single-site putative receptor at the parasite membrane, triggering a cascade of phosphorylation reactions. In the present article we characterize the receptor for IGF-I on Leishmania (Leishmania) mexicana promastigotes. The receptor is a monomeric glycoprotein with a molecular mass of 65 kDa and is antigenically related to the alpha chain of human type 1 IGF-I receptor. Upon IGF-I stimulation the receptor undergoes autophosphorylation on tyrosine residues with activation of its signaling pathway. Activation of the IGF-I receptor also leads to phosphorylation of an 185-kDa molecule that is homologous to the substrate of the insulin receptor present in human cells, the insulin receptor substrate 1 (IRS-1).  相似文献   

12.
Insulin-like growth factor II (IGF-II) shares sequence homology and predicted three-dimensional structure with insulin and IGF-I. IGF-II can bind, therefore, to a limited extent with the receptors for these two other hormones, as well as to a distinct receptor for IGF-II. Previous studies have been unable to attribute a particular response of IGF-II through its own receptor. In the present studies, the IGF-II receptor is shown to mediate the stimulation of glycogen synthesis in human hepatoma cells since: (i) IGF-II is found to be capable of stimulating a response at concentrations in which it would primarily interact with its own receptor; (ii) the response to IGF-II was not blocked by monoclonal antibodies which inhibit the responses of cells through the insulin and IGF-I receptors; and (iii) polyclonal antibodies to the IGF-II receptor were found to mimic the ability of IGF-II to stimulate glycogen synthesis. These results indicate that the IGF-II receptor mediates a particular biological response--stimulation of glycogen synthesis in hepatoma cells. Furthermore, a monovalent Fab fragment of the polyclonal antibody to the IGF-II receptor was also shown to stimulate glycogen synthesis in these cells. These data indicate that clustering of the IGF-II receptor is not required to stimulate a biological response.  相似文献   

13.
Two classes of mitogens, competence and progression factors, function synergistically to reinitiate DNA synthesis of quiescent cells in culture. Competence factors, such as Platelet-Derived Growth Factor and Fibroblast Growth Factor, deliver their mitogenic signal after only brief exposure. In contrast, progression factors, including insulin and the Insulin-like Growth Factors, are required throughout the prereplicative phase. We now report that thrombin behaves as a competence factor in Chinese hamster fibroblasts. In particular, thrombin displays a persistent effect on DNA synthesis after transient exposure (3 hours). However, use of [125I]thrombin reveals that despite removal of thrombin from culture medium following the brief exposure, a significant amount of thrombin remains associated with cells. If cell-associated thrombin is totally removed (after a 3 hour incubation) with a specific thrombin inhibitor, hirudin, subsequent mitogenic action is totally abolished. Therefore, we propose that “competence” factors must occupy their receptors for the entire G1 period (more than 8 hours) of G0-arrested cells to trigger the mitogenic response.  相似文献   

14.
In this paper we propose a Systems Biology approach to understand the molecular biology of the Epidermal Growth Factor Receptor (EGFR, also known as ErbB1/HER1) and type 1 Insulin-like Growth Factor (IGF1R) pathways in non-small cell lung cancer (NSCLC). This approach, combined with Translational Oncology methodologies, is used to address the experimental evidence of a close relationship among EGFR and IGF1R protein expression, by immunohistochemistry (IHC) and gene amplification, by in situ hybridization (FISH) and the corresponding ability to develop a more aggressive behavior. We develop a detailed in silico model, based on ordinary differential equations, of the pathways and study the dynamic implications of receptor alterations on the time behavior of the MAPK cascade down to ERK, which in turn governs proliferation and cell migration. In addition, an extensive sensitivity analysis of the proposed model is carried out and a simplified model is proposed which allows us to infer a similar relationship among EGFR and IGF1R activities and disease outcome.  相似文献   

15.
We have shown previously that experimental modifications of the cellular lipid composition of an insulin-sensitive rat hepatoma cell line (Zajdela Hepatoma Culture, ZHC) affect both binding and biological actions of insulin. Discrepancies between insulin binding and actions implied a postbinding defect, responsible for the observed insulin resistance in lipid-treated cells. To elucidate the mechanism for this defect, we have studied insulin binding and insulin receptor kinase activity in partially purified receptor preparations from ZHC cells grown either in normal medium or in medium supplemented with linoleic acid or 25-hydroxycholesterol. Insulin binding to the lectin-purified insulin receptor showed only a small alteration in receptor affinity for the preparations from lipid-treated cells. Insulin-stimulated autophosphorylation of the beta-subunit of the insulin receptor, as well as insulin-induced phosphorylation of the artificial substrate poly(Glu,Tyr)4:1, was significantly decreased in the preparations from lipid-modified cells. Although differences in basal levels were observed, the magnitude of the insulin-stimulated kinase activity was significantly decreased in receptor preparations from lipid-treated cells. These findings indicate that experimental modification of the lipids of cultured hepatoma cells can produce in insulin receptor kinase activity changes that are proportional to the reduced insulin action observed in these cells.  相似文献   

16.
The lipid content of cultured cells can be experimentally modified by supplementing the culture medium with specific lipids or by the use of phospholipases. In the case of the insulin receptor, these methods have contributed to a better understanding of lipid disorder-related diseases. Previously, our laboratory demonstrated that experimental modification of the cellular lipid composition of an insulin-sensitive rat hepatoma cell line (ZHC) resulted in an alteration in insulin receptor binding and biological action (Bruneau et al., Biochim. Biophys. Acta 928 (1987) 287-296/297-304). In this paper, we have examined the effects of lipid modification in another hepatoma cell line, HepG2. Exogenous linoleic acid (LA, n-6), eicosapentaenoic acid (EPA, n-3) or hemisuccinate of cholesterol (CHS) was added to HepG2 cells, to create a cellular model in which membrane composition was modified. In this model, we have shown that: (1) lipids were incorporated in treated HepG2 cells, but redistributed differently when compared to treated ZHC cells; (2) that insulin signaling events, such as insulin receptor autophosphorylation and the phosphorylation of the major insulin receptor substrate (IRS-1) were altered in response to the addition of membrane lipids or cholesterol derived components; and (3) different lipids affected insulin receptor signaling differently. We have also shown that the loss of insulin receptor autophosphorylation in CHS-treated cells can be correlated with a decreased sensitivity to insulin. Overall, the results suggest that the lipid environment of the insulin receptor may play an important role in insulin signal transduction.  相似文献   

17.
The polypeptide hormone insulin and the binding unit of cholera toxin (CTB) were coupled via a disulfide bond. This hybrid molecule had 1/30 the ability of native insulin to bind to the insulin receptor and 1/30 the biological activity of native insulin in H35 rat hepatoma cells and rat adipocytes. Thus, in these two cell types that are very sensitive to insulin, the biological activity of the hybrid molecule was as predicted on the basis of the ability of the molecule to interact with the insulin receptor. In contrast, in HTC rat hepatoma cells and rat thymocytes, two poorly responsive cell types, the insulin-CTB conjugate had 1/3 the biological activity of native insulin, a value 10 times greater than its insulin receptor binding potency. This increased activity of the conjugate did not appear to be due to cholera toxin in the preparation, since a control of uncoupled CTB had no biological activity. Furthermore, native cholera toxin increased intracellular levels of cAMP by 20-fold, whereas the conjugate had no effect on cAMP levels. The CTB moiety did, however, contribute to the biological activity of the conjugate, since the activity of the hybrid molecule, like cholera toxin, was inhibited by gangliosides, whereas the activity of native insulin was not. Finally, the binding to thymocytes of insulin-CTB conjugate, but not insulin, was inhibited by gangliosides. Thus, a hybrid hormone molecule has been constructed which has insulin-like biological activity with the receptor specificity of cholera toxin in poorly responsive cells.  相似文献   

18.
Concanavalin A (ConA) stimulated the phosphorylation of the beta-subunit of the insulin receptor and an Mr-185,000 protein on serine and tyrosine residues in intact H-35 rat hepatoma cells. This Mr-185,000 protein whose phosphorylation was stimulated by ConA was identical to pp185, a protein reported previously to be a putative endogenous substrate for the insulin receptor tyrosine kinase in rat hepatoma cells. In Chinese hamster ovary (CHO) cells transfected with cDNA of the human insulin receptor, tyrosine-phosphorylation of pp185 was strongly enhanced by ConA compared with the controls, suggesting that the induction of tyrosine-phosphorylation of pp185 was due to stimulation of the insulin receptor kinase by ConA. Moreover, monovalent ConA only slightly induced the tyrosine-phosphorylation of pp185, which was enhanced by the addition of anti-ConA IgG, suggesting that ConA stimulated the insulin receptor kinase mainly by the receptor cross-linking or aggregation in intact cells. These data suggest that the insulin-mimetic action of ConA is related to the autophosphorylation and activation of the insulin receptor tyrosine kinase, as well as the subsequent phosphorylation of pp185 in intact cells.  相似文献   

19.
In order to study the role of tyrosine autophosphorylation in insulin receptor signalling, we investigated a mutant human insulin receptor whereby the three major tyrosine autophosphorylation sites at positions 1158, 1162, and 1163 in the receptor beta-subunit were mutated to phenylalanines. When these mutant receptors were expressed in HTC rat hepatoma cells, there was no enhanced beta-subunit autophosphorylation and tyrosine kinase activity. In these cells there was enhanced insulin stimulation of [3H]AIB uptake and [3H]thymidine incorporation when compared to wild type HTC cells. The present study suggests therefore that the presence of the major insulin autophosphorylation sites is not a requirement for insulin stimulation of amino acid transport and mitogenesis.  相似文献   

20.
ABSTRACT

In the last decades increasing importance has been attributed to the Insulin/Insulin-like Growth Factor signaling (IIGFs) in cancer development, progression and resistance to therapy. In fact, IIGFs is often deregulated in cancer. In particular, the mitogenic insulin receptor isoform A (IR-A) and the insulin-like growth factor receptor (IGF-1R) are frequently overexpressed in cancer together with their cognate ligands IGF-1 and IGF-2. Recently, we identified discoidin domain receptor 1 (DDR1) as a new IR-A interacting protein. DDR1, a non-integrin collagen tyrosine kinase receptor, is overexpressed in several malignancies and plays a role in cancer progression and metastasis.

Herein, we review recent findings indicating that DDR1 is as a novel modulator of IR and IGF-1R expression and function. DDR1 functionally interacts with IR and IGF-1R and enhances the biological actions of insulin, IGF-1 and IGF-2. Conversely, DDR1 is upregulated by IGF-1, IGF-2 and insulin through the PI3K/AKT/miR-199a-5p circuit. Furthermore, we discuss the role of the non-canonical estrogen receptor GPER1 in the DDR1-IIGFs crosstalk. These data suggest a wider role of DDR1 as a regulator of cell response to hormones, growth factors, and signals coming from the extracellular matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号