首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The GTP-dependent restriction enzyme McrBC consists of two polypeptides: one (McrB) that is responsible for GTP binding and hydrolysis as well as DNA binding and another (McrC) that is responsible for DNA cleavage. It recognizes two methylated or hemimethylated RC sites (R(m)C) at a distance of approximately 30 to more than 2000 base pairs and cleaves the DNA close to one of the two R(m)C sites. This process is strictly coupled to GTP hydrolysis and involves the formation of high-molecular mass complexes. We show here using footprinting techniques, surface plasmon resonance, and scanning force microscopy experiments that in the absence of McrC, McrB binds to a single R(m)C site. If a second R(m)C site is present on the DNA, it is occupied independently by McrB. Whereas the DNA-binding domain of McrB forms 1:1 complexes with each R(m)C site and shows a clear footprint on both R(m)C sites, full-length McrB forms complexes with a stoichiometry of at least 4:1 at each R(m)C site, resulting in a slightly more extended footprint. In the presence of McrC, McrB forms high-molecular mass complexes of unknown stoichiometry, which are considerably larger than the complexes formed with McrB alone. In these complexes and when GTP is present, the DNA is cleaved next to one of the R(m)C sites at distances differing by one to five helical turns, suggesting that in the McrBC-DNA complex only a few topologically well-defined phosphodiester bonds of the DNA are accessible for the nucleolytic center of McrC.  相似文献   

2.
McrBC from Escherichia coli K-12 is a restriction enzyme that belongs to the family of AAA(+) proteins and cuts DNA containing modified cytosines. Two proteins are expressed from the mcrB gene: a full-length version, McrB(L), and a short version, McrB(S). McrB(L) binds specifically to the methylated recognition site and is, therefore, the DNA-binding moiety of the McrBC endonuclease. McrB(S) is devoid of DNA-binding activity. We observed that the quaternary structure of the endonuclease depends on binding of the cofactors. In gel filtration experiments, McrB(L) and McrB(S) form high molecular weight oligomers in the presence of Mg(2+) and GTP, GDP or GTP-gamma-S. Oligomerization did not require the presence of DNA and was independent of GTP hydrolysis. Electron micrographs of negatively stained McrB(L) and McrB(S) revealed ring-shaped particles with a central channel. Mass analysis by scanning transmission electron microscopy indicates that McrB(L) and McrB(S) form single heptameric rings as well as tetradecamers. In the presence of McrC, a subunit that is essential for DNA cleavage, the tetradecameric species was the major form of the endonuclease.  相似文献   

3.
McrBC, a GTP-requiring, modification-dependent endonuclease of Escherichia coli K-12, specifically recognizes DNA sites of the form 5' R(m)C 3'. DNA cleavage normally requires translocation-mediated coordination between two such recognition elements at distinct sites. We have investigated assembly of the cleavage-competent complex with gel-shift and DNase I footprint analysis. In the gel-shift system, McrB(L) binding resulted in a fast-migrating specific shifted band, in a manner requiring both GTP and Mg(2+). The binding was specific for methylated DNA and responded to local sequence changes in the same way that cleavage does. Single-stranded DNA competed for McrB(L)-binding in a modification and sequence-specific fashion. A supershifted species was formed in the presence of McrC and GTPgammaS. DNase I footprint analysis showed modest cooperativity in binding to two sites, and a two-site substrate displayed protection in non-specific spacer DNA in addition to the recognition elements. The addition of McrC did not affect the footprint obtained. We propose that McrC effects a conformational change in the complex rather than a reorganization of the DNA:protein interface.  相似文献   

4.
The GTP-dependent restriction endonuclease McrBC of E. coli K12, which recognizes cytosine-methylated DNA, consists of two protein subunits, McrB and McrC. We have investigated the structural assignment and interdependence of the McrB subunit functions, namely (i) specific DNA recognition and (ii) GTP binding and hydrolysis. Extending earlier work, we have produced McrB variants comprising N- and C-terminal fragments. The variants McrB1-162 and McrB1-170 are still capable of specific DNA binding. McrB169-465 shows GTP binding and hydrolysis characteristics indistinguishable from full-length McrB as well as wild-type like interaction with McrC. Thus, DNA and GTP binding are spatially separated on the McrB molecule, and the respective domains function quite independently.  相似文献   

5.
Pieper U  Pingoud A 《Biochemistry》2002,41(16):5236-5244
McrBC is a unique restriction enzyme which binds specifically to the bipartite recognition sequence R(m)CN( approximately )(30)(-)( approximately )(2000)R(m)C and in the presence of GTP translocates the DNA and cleaves both strands at multiple positions within the two R(m)C "half-sites". It is known that McrBC is composed of two subunits: McrB which binds and hydrolyzes GTP and specifically interacts with DNA and McrC whose function is not clear but which has been suspected to harbor the catalytic center for DNA cleavage. A multiple-sequence alignment of the amino acid sequence of Escherichia coli McrC and of six presumably homologous open reading frames from various bacterial species shows that a sequence motif found in many restriction enzymes, but also in other nucleases, the PD.D/EXK motif, is conserved among these sequences. A mutational analysis, in which the carboxylates (aspartic acid in McrC) of this motif were substituted with alanine or asparagine and lysine was substituted with alanine or arginine, strongly suggests that Asp244, Asp257, and Lys259 represent the catalytic center of E. coli McrC. Whereas the variants D244A (or -N), D257A (or -N), and K259A are inactive in DNA cleavage (K259R has residual DNA cleavage activity), they interact with McrB like wild-type McrC, as can be deduced from the finding that they stimulate the McrB-catalyzed GTP hydrolysis to the same extent as wild-type McrC. Thus, whereas McrC variants defective in DNA cleavage can stimulate the GTPase activity of McrB, the DNase activity of McrC is not supported by McrB variants defective in GTP hydrolysis.  相似文献   

6.
McrBs, a modulator peptide for McrBC activity.   总被引:1,自引:1,他引:0       下载免费PDF全文
D Panne  E A Raleigh    T A Bickle 《The EMBO journal》1998,17(18):5477-5483
McrBC is a methylation-dependent endonuclease from Escherichia coli K-12. The enzyme recognizes DNA with modified cytosines preceded by a purine. McrBC restricts DNA that contains at least two methylated recognition sites separated by 40-80 bp. Two gene products, McrBL and McrBs, are produced from the mcrB gene and one, McrC, from the mcrC gene. DNA cleavage in vitro requires McrBL, McrC, GTP and Mg2+. We found that DNA cleavage was optimal at a ratio of 3-5 McrBL per molecule of McrC, suggesting that formation of a multisubunit complex with several molecules of McrBL is required for cleavage. To understand the role of McrBs, we have purified the protein and analyzed its role in vitro. At the optimal ratio of 3-5 McrBL per molecule of McrC, McrBs acted as an inhibitor of DNA cleavage. Inhibition was due to sequestration of McrC and required the presence of GTP, suggesting that the interaction is GTP dependent. If McrC was in excess, a condition resulting in suboptimal DNA cleavage, addition of McrBs enhanced DNA cleavage, presumably due to sequestration of excess McrC. We suggest that the role of McrBs is to modulate McrBC activity by binding to McrC.  相似文献   

7.
The mcrB (rglB) locus of Escherichia coli K-12 mediates sequence-specific restriction of cytosine-modified DNA. Genetic and sequence analysis shows that the locus actually comprises two genes, mcrB and mcrC. We show here that in vivo, McrC modifies the specificity of McrB restriction by expanding the range of modified sequences restricted. That is, the sequences sensitive to McrB(+)-dependent restriction can be divided into two sets: some modified sequences containing 5-methylcytosine are restricted by McrB+ cells even when McrC-, but most such sequences are restricted in vivo only by McrB+ McrC+ cells. The sequences restricted only by McrB+C+ include T-even bacteriophage containing 5-hydroxymethylcytosine (restriction of this phage is the RglB+ phenotype), some sequences containing N4-methylcytosine, and some sequences containing 5-methylcytosine. The sequence codes for two polypeptides of 54 (McrB) and 42 (McrC) kilodaltons, whereas in vitro translation yields four products, of approximately 29 and approximately 49 (McrB) and of approximately 38 and approximately 40 (McrC) kilodaltons. The McrB polypeptide sequence contains a potential GTP-binding motif, so this protein presumably binds the nucleotide cofactor. The deduced McrC polypeptide is somewhat basic and may bind to DNA, consistent with its genetic activity as a modulator of the specificity of McrB. At the nucleotide sequence level, the G+C content of mcrBC is very low for E. coli, suggesting that the genes may have been acquired recently during the evolution of the species.  相似文献   

8.
The McrBC restriction system has the ability to restrict DNA containing 5-hydroxymethylcytosine, N4-methylcytosine, and 5-methylcytosine at specific sequences. The mcrB gene produces two gene products. The complete mcrB open reading frame produces a 51-kDa protein (McrB(L)) and a 33-kDa protein (McrB(S)). The smaller McrB polypeptide is produced from an in-frame, internal translational start site in the mcrB gene. The McrB(S) sequence is identical to that of McrB(L) except that it lacks 161 amino acids present at the N-terminal end of the latter protein. It has been suggested that McrB(L) is the DNA binding restriction subunit. The function of McrB(S) is unknown, although there has been speculation that it plays some role in the modulation of McrBC restriction. Studies of the function of McrB(S) have been challenging since it is produced in frame with McrB(L). In this study, we tested the effects of underproduction (via antisense RNA) and overproduction (via gene dosage) of mcrBC gene products on restriction levels of the mcrBC+ strain JM107. Among the parameters monitored was the induction of SOS responses, which indicate of DNA damage. Evidence from this study suggests that McrB(S) is necessary for stabilization of the McrBC restriction complex in vivo.  相似文献   

9.
McrBC specifically recognizes and cleaves methylated DNA in a reaction dependent on GTP hydrolysis. DNA cleavage requires at least two recognition sites that are optimally separated by 40-80 bp, but can be spaced as far as 3 kb apart. The nature of the communication between two recognition sites was analyzed on DNA substrates containing one or two recognition sites. DNA cleavage of circular DNA required only one methylated recognition site, whereas the linearized form of this substrate was not cleaved. However, the linearized substrate was cleaved if a Lac repressor was bound adjacent to the recognition site. These results suggest a model in which communication between two remote sites is accomplished by DNA translocation rather than looping. A mutant protein with defective GTPase activity cleaved substrates with closely spaced recognition sites, but not substrates where the sites were further apart. This indicates that McrBC translocates DNA in a reaction dependent on GTP hydrolysis. We suggest that DNA cleavage occurs by the encounter of two DNA-translocating McrBC complexes, or can be triggered by non-specific physical obstacles like the Lac repressor bound on the enzyme's path along DNA. Our results indicate that McrBC belongs to the general class of DNA "motor proteins", which use the free energy associated with nucleoside 5'-triphosphate hydrolysis to translocate along DNA.  相似文献   

10.
The methylation-dependent restriction endonuclease McrBC from Escherichia coli K12 cleaves DNA containing two R(m)C dinucleotides separated by about 40 to 2000 base-pairs. McrBC is unique in that cleavage is totally dependent on GTP hydrolysis. McrB is the GTP binding and hydrolyzing subunit, whereas MrC stimulates its GTP hydrolysis. The C-terminal part of McrB contains the sequences characteristic for GTP-binding proteins, consisting of the GxxxxGK(S/T) motif (position 201-208), followed by the DxxG motif (position 300-303). The third motif (NKxD) is present only in a non-canonical form (NTAD 333-336). Here we report a mutational analysis of the putative GTP-binding domain of McrB. Amino acid substitutions were initially performed in the three proposed GTP-binding motifs. Whereas substitutions in motif 1 (P203V) and 2 (D300N) show the expected, albeit modest effects, mutation in the motif 3 is at variance with the expectations. Unlike the corresponding EF-Tu and ras -p21 variants, the D336N mutation in McrB does not change the nucleotide specificity from GTP to XTP, but results in a lack of GTPase stimulation by McrC. The finding that McrB is not a typical G protein motivated us to perform a search for similar sequences in DNA databases. Eight microbial sequences were found, mainly from unfinished sequencing projects, with highly conserved sequence blocks within a presumptive GTP-binding domain. From the five sequences showing the highest homology, 17 invariant charged or polar residues outside the classical three GTP-binding motifs were identified and subsequently exchanged to alanine. Several mutations specifically affect GTP affinity and/or GTPase activity. Our data allow us to conclude that McrB is not a typical member of the superfamily of GTP-binding proteins, but defines a new subfamily within the superfamily of GTP-binding proteins, together with similar prokaryotic proteins of as yet unidentified function.  相似文献   

11.
A D Frankel  G K Ackers  H O Smith 《Biochemistry》1985,24(12):3049-3054
A method is described for measuring equilibrium constants of DNA-protein interactions using gel chromatography. This technique has been used to study the sequence-specific interaction of the HinfI restriction endonuclease with DNA. HinfI has a monomeric molecular weight of 31000 and exists as a dimer in its active form. The protein binds to supercoiled DNA molecules containing its recognition site with an apparent free energy of -13.9 kcal/mol of sites. This interaction is highly salt sensitive and causes a release of 3.4 ion pairs. The affinity of the nuclease for its recognition site is largely independent of both pH (6.5-8.5) and temperature (7-35 degrees C) and was not affected by variations in the degenerate middle position of the site. Linear DNA fragments containing the HinfI recognition site were bound as tightly as supercoiled molecules. Binding to nonspecific DNA sites or to methylated DNA sites was approximately 6 orders of magnitude weaker. In general, enzyme activity and binding affinity paralleled each other.  相似文献   

12.
Nucleoside triphosphate-dependent restriction enzymes   总被引:13,自引:8,他引:5       下载免费PDF全文
The known nucleoside triphosphate-dependent restriction enzymes are hetero-oligomeric proteins that behave as molecular machines in response to their target sequences. They translocate DNA in a process dependent on the hydrolysis of a nucleoside triphosphate. For the ATP-dependent type I and type III restriction and modification systems, the collision of translocating complexes triggers hydrolysis of phosphodiester bonds in unmodified DNA to generate double-strand breaks. Type I endonucleases break the DNA at unspecified sequences remote from the target sequence, type III endonucleases at a fixed position close to the target sequence. Type I and type III restriction and modification (R-M) systems are notable for effective post-translational control of their endonuclease activity. For some type I enzymes, this control is mediated by proteolytic degradation of that subunit of the complex which is essential for DNA translocation and breakage. This control, lacking in the well-studied type II R-M systems, provides extraordinarily effective protection of resident DNA should it acquire unmodified target sequences. The only well-documented GTP-dependent restriction enzyme, McrBC, requires methylated target sequences for the initiation of phosphodiester bond cleavage.  相似文献   

13.
The McrC protein, encoded by one of the two genes involved in the McrB restriction system, was produced in Escherichia coli cells by using a T7 expression system. Following sequential DEAE-Sepharose and hydroxylapatite column chromatography, the protein was purified to apparent homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminal amino acid sequence of the purified McrC protein agreed exactly with the one deduced from the DNA sequence by Ross et al. (J. Bacteriol. 171:1974-1981, 1989).  相似文献   

14.
McrBC: a multisubunit GTP-dependent restriction endonuclease.   总被引:1,自引:0,他引:1  
McrBC-mediated restriction of modified DNA has been studied extensively by genetic methods, but little is known of its molecular action. We have used overproducing plasmid constructs to facilitate purification of the McrBL and McrC proteins, and report preliminary characterization of the activity of the complex. Both proteins are required for cleavage of appropriately modified DNA in vitro, in a reaction absolutely dependent on GTP. ATP inhibits the reaction. The sequence and modification requirements for cleavage of the substrate reflect those seen in vivo. The position of cleavage was examined at the nucleotide level, revealing that cleavage occurs at multiple positions in a small region. Based upon these observations, and upon cleavage of model oligonucleotide substrates, it is proposed that the recognition site for this enzyme consists of the motif RmC(N40-80)RmC, with cleavage occurring at multiple positions on both strands, between the modified C residues. In subunit composition, cofactor requirement, and relation between cleavage and recognition site, McrBC does not fit into any of the classes (types I to IV) of restriction enzyme so far described.  相似文献   

15.
McrA is one of three functions that restrict modified foreign DNA in Escherichia coli K-12, affecting both methylated and hydroxymethylated substrates. We present here the first systematic analysis of the functional organization of McrA by using the GPS-LS insertion scanning system. We collected in-frame insertions of five amino acids at 46 independent locations and C-terminal truncations at 20 independent locations in the McrA protein. Each mutant was assayed for in vivo restriction of both methylated and hydroxymethylated bacteriophage (M.HpaII-modified lambda and T4gt, respectively) and for induction of the E. coli SOS response in the presence of M.HpaII methylation, indicative of DNA damage. Our findings suggest the presence of an N-terminal DNA-binding domain and a C-terminal catalytic nuclease domain connected by a linker region largely tolerant of amino acid insertions. DNA damage inflicted by a functional C-terminal domain is required for restriction of phage T4gt. Disruption of the N-terminal domain abolishes restriction of both substrates. Surprisingly, truncation mutations that spare the N-terminal domain do not mediate DNA damage, as measured by SOS induction, but nevertheless partially restrict M.HpaII-modified lambda in vivo. We suggest a common explanation for this "restriction without damage" and a similar observation seen in vivo with McrB, a component of another of the modified-DNA restriction functions. Briefly, we propose that unproductive site-specific binding of the protein to a vulnerable position in the lambda genome disrupts the phage development program at an early stage. We also identified a single mutant, carrying an insertion in the N-terminal domain, which could fully restrict lambda but did not restrict T4gt at all. This mutant may have a selective impairment in substrate recognition, distinguishing methylated from hydroxymethylated substrates. The study shows that the technically easy insertion scanning method can provide a rich source of functional information when coupled with effective phenotype tests.  相似文献   

16.
To investigate the potentials of DNA methylation and H1 histone in regulating the action of DNA binding proteins, well ordered complexes were formed by slow salt gradient dialysis of mixtures of H1 histone with either methylated or nonmethylated DNA. The sites methylated in the plasmids were CCGG. Methylation of cytosine in this site protects the DNA against HpaII endonuclease but not against MspI. However, when the methylated DNA was complexed to H1, it was protected against MspI. The protection was only effective for a subset of the MspI restriction sites. The protection of DNA afforded by the combination of H1 binding and DNA methylation did not apply to EcoRI, PstI, or BamHI sites and so did not seem to be due to aggregation of the DNA by H1 histone. Gel retardation assays indicated that the affinity of H1 for methylated DNA was not detectably different from its affinity for nonmethylated DNA. Probably methylated DNA when bound to H1 is in a conformation that is resistant to MspI endonuclease. Such conformational changes induced by DNA methylation and H1 binding might affect the action of other DNA binding proteins, perhaps in chromatin as well as in H1.DNA complexes.  相似文献   

17.
L Zheng  X Wang  H D Braymer 《Gene》1992,112(1):97-100
This report provides a purification method for the two proteins, 51 kDa and 33 kDa, both encoded by the same mcrB gene of the McrBC restriction system in Escherichia coli K-12. The two proteins were produced in large quantity using a T7 expression system and copurified to near homogeneity by DEAE-Sepharose and Affi-Gel blue column chromatography. The N-terminal amino acid sequences of these purified McrB proteins were the same as those predicted from the mcrB DNA sequence by Ross et al. [J. Bacteriol. 171 (1989b) 1974-1981]. The 33-kDa protein totally overlaps the C-terminal part of the 51-kDa protein.  相似文献   

18.
Summary The McrB restriction system in Escherichia coli K12 causes sequence-specific recognition and inactivation of DNA containing 5-methylcytosine residues. We have previously located the mcrB gene near hsdS at 99 min on the E. coli chromosome and demonstrated that is encodes a 51 kDa polypeptide required for restriction of M.AluI methylated (A-G-5mC-T) DNA. We show here, by analysis of maxicell protein synthesis of various cloned fragments from the mcrB region, that a second protein of approximately 39 kDa is also required for McrB-directed restriction. The new gene, designated mcrC, is adjacent to mcrB and located distally to hsdS. The McrB phenotype has been correlated previously with restriction of 5-hydroxy-methylcytosine (HMC)-containing T-even phage DNA that lacks the normal glucose modification of HMC, formally designated RglB (for restriction of glucoseless phage). This report reveals a difference between the previously correlated McrB and RglB restriction systems: while both require the mcrB gene product only the McrB system requires the newly identified mcrC-encoded 39-kDa polypeptide.  相似文献   

19.
The effects of DNA methylation on gene expression and chromatin structure suggest the existence of a mechanism in the nucleus capable of distinguishing methylated and non-methylated sequences. We report the finding of a nuclear protein in several vertebrate tissues and cell lines that binds preferentially to methylated DNA in vitro. Its lack of sequence-specific requirements makes it potentially capable of binding to any methylated sequence in mammalian nuclei. An in vivo counterpart of these results is that methylated CpGs are inaccessible to nucleases within nuclei. In contrast, non-methylated CpG sites, located mainly at CpG islands, and restriction sites not containing this dinucleotide, are relatively accessible. The possibility that DNA methylation acts through binding to specific proteins that could alter chromatin structure is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号