首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tritrichomonas foetus is an amitochondrial parasite protist which lacks typical eukaryote organelles such as mitochondria and peroxisomes, but possesses the hydrogenosome, a double-membrane-bound organelle that produces ATP. The cell death of amitochondrial organisms is poorly studied. In the present work, the cytotoxic effects of hydrogen peroxide on T. foetus and its participation on cell death were analyzed. We took advantage of several microscopy techniques, including videomicroscopy, light microscopy immunocytochemistry for detection of caspase activation, and scanning and transmission electron microscopy. We report here that in T. foetus: (1) H2O2 leads to loss of motility and induces cell death, (2) the dying cells exhibit some characteristics similar to those found during the death of other organisms, and (3) a caspase-like protein seems to be activated during the death process. Thus, we propose that, although T. foetus does not present mitochondria nor any known pathways of cell death, it is likely that it bears mechanisms of cell demise. T. foetus exhibits morphological and physiological alterations in response to H2O2 treatment. The hydrogenosome, a unique organelle which is supposed to share a common ancestral origin with mitochondria and has an important role in oxidative responses in trichomonads, is a candidate for participating in this event.Abbreviations TUNEL Terminal deoxyribonucleotide transferase (TdT)-mediated dUTP nick-end labeling - PARP Poly (ADP-ribose) polymerase - DAPI 4,6-Diamidino-2-phenylindole dihydrochloride  相似文献   

2.
The principal aim of this study was to investigate short- and long-term effects of clinorotation on human endothelial cells (EA hy 926 cell line) using a three-dimensional random positioning machine. Moreover, the impact of vascular endothelial growth factor (VEGF) was addressed. Immediately, within one hour and after four and twenty-four hours an increase of apoptotic cells was detected. VEGF significantly inhibited the amount of apoptotic endothelial cells (EC). VEGF reduced the amount of fas-positive EC. Moreover, after 24 hours, proliferating EC grew in form of three-dimensional multicellular spheroids and also as monolayers. The initially formed spheroids (maximum diameter 3 mm) remained stable up to the 15th day of clinorotation. Some spheroids revealed tubular structures. In addition, a clear increase of extracellular matrix proteins such as osteopontin and fibronectin was measured. The three-dimensional clinostat represents an important tool for cell biological experiments. VEGF significantly attenuated the changes of endothelial cells induced by simulated weightlessness in a cell protective manner.  相似文献   

3.
We have previously shown that the 16-kDa N-terminal fragment of human prolactin (16K hPRL) has antiangiogenic properties, including the ability to induce apoptosis in vascular endothelial cells. Here, we examined whether the nuclear factor-kappaB (NF-kappaB) signaling pathway was involved in mediating the apoptotic action of 16K hPRL in bovine adrenal cortex capillary endothelial cells. In a dose-dependent manner, treatment with 16K hPRL induced inhibitor kappaB-alpha degradation permitting translocation of NF-kappaB to the nucleus and reporter gene activation. Inhibition of NF-kappaB activation by overexpression of a nondegradable inhibitor kappaB-alpha mutant or treatment with NF-kappaB inhibitors blocked 16K hPRL-induced apoptosis. Treatment with 16K hPRL activated the initiator caspases-8 and -9 and the effector caspase-3, all of which were essential for stimulation of DNA fragmentation. This activation of the caspase cascade by 16K hPRL was also NF-kappaB dependent. These findings support the conclusion that NF-kappaB signaling plays a central role in 16K hPRL-induced apoptosis in vascular endothelial cells.  相似文献   

4.
Proteolysis mediated by the ubiquitin-proteasome system has been implicated in the regulation of programmed cell death. Here we investigated the differential effects of proteasomal inhibitors on the viability of proliferating and quiescent primary endothelial cells in vitro and in vivo. Subconfluent, proliferating cells underwent carbobenzoxy-L-isoleucyl-gamma-t-butyl-L-glutamyl-L-alanyl-L-leucinal (PSI) -induced apoptosis at low concentrations (EC(50)=24 nM), whereas at least 340-fold higher concentrations of PSI were necessary to obtain the same effect in confluent, contact-inhibited cells. PSI-mediated cell death could be blocked by a caspase-3 inhibitor (Ac-DEVD-H), but not by a caspase-1 inhibitor (Ac-YVAD-H), suggesting that a caspase-3-like enzyme is activated during PSI-induced apoptosis. When applied to the embryonic chick chorioallantoic membrane, a rapidly expanding tissue, PSI induced massive apoptosis also in vivo. PSI treatment of the CAM led to the formation of areas devoid of blood flow due to the induction of apoptosis in endothelial and other cells and to the collapse of capillaries and first order vessels. Our results demonstrate that proteasomal inhibitors such as PSI may prove effective as novel anti-angiogenic and anti-neoplastic substances.  相似文献   

5.
Severe hyperhomocysteinemia is associated with endothelial cell injury that may contribute to an increased incidence of thromboembolic disease. In this study, homocysteine induced programmed cell death in human umbilical vein endothelial cells as measured by TdT-mediated dUTP nick end labeling assay, DNA ladder formation, induction of caspase 3-like activity, and cleavage of procaspase 3. Homocysteine-induced cell death was specific to homocysteine, was not mediated by oxidative stress, and was mimicked by inducers of the unfolded protein response (UPR), a signal transduction pathway activated by the accumulation of unfolded proteins in the lumen of the endoplasmic reticulum. Dominant negative forms of the endoplasmic reticulum-resident protein kinases IRE1alpha and -beta, which function as signal transducers of the UPR, prevented the activation of glucose-regulated protein 78/immunoglobulin chain-binding protein and C/EBP homologous protein/growth arrest and DNA damage-inducible protein 153 in response to homocysteine. Furthermore, overexpression of the point mutants of IRE1 with defective RNase more effectively suppressed the cell death than the kinase-defective mutant. These results indicate that homocysteine induces apoptosis in human umbilical vein endothelial cells by activation of the UPR and is signaled through IRE1. The studies implicate that the UPR may cause endothelial cell injury associated with severe hyperhomocysteinemia.  相似文献   

6.
Oligochitosan has been proved to trigger plant cell death. To gain some insights into the mechanisms of oligochitosan-induced cell death, the nature of oligochitosan-induced cell death and the role of calcium (Ca2+), nitric oxide (NO) and hydrogen peroxide (H2O2) were studied in tobacco suspension cells. Oligochitosan-induced cell death occurred in cytoplasmic shrinkage, phosphatidylserine externalization, chromatin condensation, TUNEL-positive nuclei, cytochrome c release and induction of programmed cell death (PCD)-related gene hsr203J, suggesting the activation of PCD pathway. Pretreatment cells with cyclosporin A, resulted in reducing oligochitosan-induced cytochrome c release and cell death, indicating oligochitosan-induced PCD was mediated by cytochrome c. In the early stage, cells undergoing PCD showed an immediate burst in free cytosolic Ca2+ ([Ca2+]cyt) elevation, NO and H2O2 production. Further study showed that these three signals were involved in oligochitosan-induced PCD, while Ca2+ and NO played a negative role in this process by modulating cytochrome c release.  相似文献   

7.
Prolonged ERK/MAPK activation has been implicated in neuronal cell death in vitro and in vivo. We found that HEK293 cells, recently reported to express neuronal markers, are exquisitely sensitive to long term ERK stimulation. Activation of an inducible form of Raf-1 (Raf-1:ER) in HEK293 cells induced massive apoptosis characterized by DNA degradation, loss of plasma membrane integrity and PARP cleavage. Cell death required MEK activity and protein synthesis and occurred via the death receptor pathway independently of the mitochondrial pathway. Accordingly, prolonged ERK stimulation activated caspase 8 and strongly potentiated Fas signaling. The death receptor adaptator FADD was found to be rapidly induced upon ERK activation. However using RNA interference and ectopic expression, we demonstrated that neither FADD nor Fas were necessary for caspase 8 activation and cell death. These findings reveal that prolonged ERK/MAPK stimulation results in caspase 8 activation and cell death. This work was supported by grant from Association pour la Recherche sur le Cancer (CNRS6543/ARC). S. Cagnol is supported by a fellowship from the Ligue Nationale contre le Cancer.  相似文献   

8.
The programmed cell death inducing effect of the EGF receptor tyrosine kinase inhibitor α-cyano-3,4-dihydroxycinnamthioamide (AG213) was investigated in vitro on HT-29 human colon tumor. AG213 at concentrations between 45 to 450 μM blocks the proliferation of HT-29 cells. Morphological findings suggest that the selective tyrosine kinase inhibitor AG213 induces Clarke III type (non-lysosomal vesiculate cytoplasmic) programmed cell death; unlike ATP analog non-selective tyrosine kinase inhibitors like Genistein which were found to induce apoptosis. Cycloheximide and Actinomycin-D reduced the effect of AG213 pointing to the fact that protein and RNA synthesis are also needed for this form of cell death. Acid phosphatase activity was found in the Golgi and in the newly formed intracytoplasmic vacuoles 3 hours after AG213 treatment which disappeared by 6 hours. The induction of Clarke III cell death by tyrosine kinase inhibitors may open a new modality to selective killing of tumor cells.  相似文献   

9.
We demonstrate that human umbilical vein endothelial cells (HUVEC) grown in co-culture (CC) with U87 glioblastoma cells transfected with green fluorescent protein (GFP-U87) exhibit resistance to radiation-mediated apoptosis. cDNA macroarray analysis reveals increases in the accumulation of RNAs for HUVEC genes encoding cell adhesion molecules, growth factor-related proteins, and cell cycle regulatory/DNA repair proteins. An increase in protein expression of integrin alphav, integrin beta1, MAPK(p42), Rad51, DNA-PK(CS), and ataxia telangiectasia gene (ATM) was detected in HUVEC grown in CC with GFP-U87 cells compared with HUVEC grown in mono-culture. Treatment with anti-VEGF antibody decreases the expression of integrin alphav, integrin beta1, DNA-PK(CS) and ATM with a corresponding increase in ionizing radiation (IR)-induced apoptosis. These data support the concept that endothelial cells growing in the tumor microenvironment may develop resistance to cytotoxic therapies due to the up-regulation by tumor cells of endothelial cells genes associated with survival.  相似文献   

10.
Among the seven caspases encoded in the fly genome, only dronc contains a caspase recruitment domain. To assess the function of this gene in development, we produced a null mutation in dronc. Animals lacking zygotic dronc are defective for programmed cell death (PCD) and arrest as early pupae. These mutants present a range of defects, including extensive hyperplasia of hematopoietic tissues, supernumerary neuronal cells, and head involution failure. dronc genetically interacts with the Ced4/Apaf1 counterpart, Dark, and adult structures lacking dronc are disrupted for fine patterning. Furthermore, in diverse models of metabolic injury, dronc- cells are completely insensitive to induction of cell killing. These findings establish dronc as an essential regulator of cell number in development and illustrate broad requirements for this apical caspase in adaptive responses during stress-induced apoptosis.  相似文献   

11.
The present study focused on the effects of simulated microgravity on the human follicular thyroid carcinoma cell line ML-1. Cultured on a three-dimensional clinostat ML- 1 cells formed three-dimensional multicellular tumor spheroids (MCTS: 0.3 +/= 0.01mm in diameter). Furthermore, ML-1 cells grown on the clinostat showed elevated amounts of the apoptosis-associated Fas protein, of p53 and of bax, but reduced quantities of bcl-2. In addition, signs of apoptosis as assessed by TdT-mediated DUTP digoxigenin nick end labeling, DAPI staining, DNA laddering and 85-kDa apoptosis-related DNA fragments became detectable. The latter ones resulted from enhanced 116-kDa poly(ADP-ribose)polymerase activity. Electron microscopy revealed all morphological signs of apoptosis. Caspase 3 was clearly upregulated. In conclusion, our experiments show that conditions of simulated microgravity induce early programmed cell death and use different pathways of apoptosis.  相似文献   

12.
The initial activation of a caspase in a caspase cascade is a crucial event that determines whether a cell will ultimately undergo cell death. Although each cell contains a number of different caspases, only a small subset may be required for apoptosis in response to a specific stimulus. It now seems that each caspase cascade has two types of caspases involved, the upstream or class I caspases, and the downstream or class II caspases. Class I caspases are characterised by long amino-terminal prodomains that carry specific protein - protein interaction domains which mediate oligomerisation of caspases, often assisted by specific adaptor molecules. Oligomerisation appears to be sufficient for autocatalytic activation of class I caspases. Once the first caspase in the pathway has been activated, it processes downstream caspases initiating a cascade of amplifying events that lead to the apoptotic death of a cell. This article reviews our current understanding of mechanisms that mediate the activation of caspases.  相似文献   

13.
Damaged endothelium is one of the pathological changes of the cerebral vasospastic vessels following subarachnoid hemorrhage. Our recent study shows that oxyhemoglobin (OxyHb) induces apoptosis in vascular endothelial cells. Apoptosis generally requires the action of various classes of proteases, including a family of cysteine proteases, known collectively as the caspases. This study was undertaken to investigate the activation of caspases and the efficacy of caspase inhibitors, z-IETD-fmk and z-LEHD-fmk, for oxyhemoglobin-induced apoptosis in vascular endothelial cells. Cultured bovine brain microvascular endothelial cells (passages 5-9) were used for this study. OxyHb (10 micromol/L) was added during the 24-72 h incubation with and without caspase-8 or - 9 inhibitors (z-IETD-fmk and z-LEHD-fmk). Counting surviving cells, DNA laddering, western blotting of poly(ADP-ribose) polymerase, and measurement of caspase activities were employed to confirm the cytotoxic effects of OxyHb and the protective effects of the caspase inhibitors. OxyHb produced cell detachment in a time-dependent manner and increased caspase-8 and -9 activities in the cells. z-IETD-fmk and z-LEHD-fmk (100 micromol/L) attenuated OxyHb-induced cell loss, DNA laddering, and proteolytic cleavage of PARP, although a lower concentration (10 micromol/L) of caspase inhibitors showed partial effects. OxyHb activates caspase-8 and -9 in cultured vascular endothelial cells, and blocking the action of the caspases with the inhibitors efficiently prevents loss of vascular endothelial cells from OxyHb-induced apoptosis in vitro. These results suggest that the caspase cascade participates in OxyHb-induced apoptosis.  相似文献   

14.
15.
Huang CY  Chen JY  Wu SC  Tan CH  Tzeng RY  Lu PJ  Wu YF  Chen RH  Wu YC 《PloS one》2012,7(5):e36584
Programmed cell death (apoptosis) is essential for the development and homeostasis of metazoans. The central step in the execution of programmed cell death is the activation of caspases. In C. elegans, the core cell death regulators EGL-1(a BH3 domain-containing protein), CED-9 (Bcl-2), and CED-4 (Apaf-1) act in an inhibitory cascade to activate the CED-3 caspase. Here we have identified an additional component eif-3.K (eukaryotic translation initiation factor 3 subunit k) that acts upstream of ced-3 to promote programmed cell death. The loss of eif-3.K reduced cell deaths in both somatic and germ cells, whereas the overexpression of eif-3.K resulted in a slight but significant increase in cell death. Using a cell-specific promoter, we show that eif-3.K promotes cell death in a cell-autonomous manner. In addition, the loss of eif-3.K significantly suppressed cell death-induced through the overexpression of ced-4, but not ced-3, indicating a distinct requirement for eif-3.K in apoptosis. Reciprocally, a loss of ced-3 suppressed cell death induced by the overexpression of eif-3.K. These results indicate that eif-3.K requires ced-3 to promote programmed cell death and that eif-3.K acts upstream of ced-3 to promote this process. The EIF-3.K protein is ubiquitously expressed in embryos and larvae and localizes to the cytoplasm. A structure-function analysis revealed that the 61 amino acid long WH domain of EIF-3.K, potentially involved in protein-DNA/RNA interactions, is both necessary and sufficient for the cell death-promoting activity of EIF-3.K. Because human eIF3k was able to partially substitute for C. elegans eif-3.K in the promotion of cell death, this WH domain-dependent EIF-3.K-mediated cell death process has potentially been conserved throughout evolution.  相似文献   

16.
Wang L  Liu L  Shi Y  Cao H  Chaturvedi R  Calcutt MW  Hu T  Ren X  Wilson KT  Polk DB  Yan F 《PloS one》2012,7(5):e36418
Berberine, an isoquinoline alkaloid derived from plants, is a traditional medicine for treating bacterial diarrhea and intestinal parasite infections. Although berberine has recently been shown to suppress growth of several tumor cell lines, information regarding the effect of berberine on colon tumor growth is limited. Here, we investigated the mechanisms underlying the effects of berberine on regulating the fate of colon tumor cells, specifically the mouse immorto-Min colonic epithelial (IMCE) cells carrying the Apc(min) mutation, and of normal colon epithelial cells, namely young adult mouse colonic epithelium (YAMC) cells. Berberine decreased colon tumor colony formation in agar, and induced cell death and LDH release in a time- and concentration-dependent manner in IMCE cells. In contrast, YAMC cells were not sensitive to berberine-induced cell death. Berberine did not stimulate caspase activation, and PARP cleavage and berberine-induced cell death were not affected by a caspase inhibitor in IMCE cells. Rather, berberine stimulated a caspase-independent cell death mediator, apoptosis-inducing factor (AIF) release from mitochondria and nuclear translocation in a ROS production-dependent manner. Amelioration of berberine-stimulated ROS production or suppression of AIF expression blocked berberine-induced cell death and LDH release in IMCE cells. Furthermore, two targets of ROS production in cells, cathepsin B release from lysosomes and PARP activation were induced by berberine. Blockage of either of these pathways decreased berberine-induced AIF activation and cell death in IMCE cells. Thus, berberine-stimulated ROS production leads to cathepsin B release and PARP activation-dependent AIF activation, resulting in caspase-independent cell death in colon tumor cells. Notably, normal colon epithelial cells are less susceptible to berberine-induced cell death, which suggests the specific inhibitory effects of berberine on colon tumor cell growth.  相似文献   

17.
Malerba M  Cerana R  Crosti P 《Protoplasma》2003,222(3-4):113-116
Summary. Programmed cell death plays a pivotal role in several developmental processes of plants and it is involved in the response to environmental stresses and in the defense mechanisms against pathogen attack. It has not yet been defined which part of the death signalling mechanism and which molecules involved in programmed cell death are common to animals and plants. In this paper we show that fusicoccin, a well-known phytotoxin, induces a strong acceleration in the appearance of Evans Blue-stainable (dead) cells in sycamore (Acer pseudoplatanus L.) cultures. This fusicoccin-induced cell death shows aspects common to the form of animal programmed cell death termed apoptosis: i.e., cell shrinkage, changes in nucleus morphology, increase in DNA fragmentation detectable by a specific immunological reaction, and presence of oligonucleosomal-size fragments (laddering) in DNA gel electrophoresis. Since fusicoccin has a well-identified molecular target, the plasma membrane H+-ATPase, and thoroughly investigated physiological effects, this toxin appears to be a useful tool to study the transduction of death signals leading to programmed cell death in plants.Correspondence and reprints: Dipartimento di Biotecnologie e Bioscienze, Universitä degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.  相似文献   

18.
Angiogenesis is an essential component of chronic inflammation that is linked to carcinogenesis. In this study, we report that human vascular endothelial growth inhibitor (VEGI, TNF superfamily 15), an endothelial cell-produced antiangiogenic cytokine, induces mouse dendritic cell (DC) maturation, a critical event in inflammation-initiated immunity. VEGI-stimulated bone marrow-derived immature DCs display early activation of maturation signaling molecules NF-kappaB, STAT3, p38, and JNK, and cytoskeleton reorganization and dendrite formation. The activation signals are partially inhibited by using a neutralizing Ab against death domain-containing receptor-3 (DR3) or a truncated form of DR3 consisting of the extracellular domain, indicating an involvement of DR3 in the transmission of VEGI activity. A VEGI isoform, TL1A, does not induce similar activities under otherwise identical experimental conditions. Additionally, the cells reveal significantly enhanced expression of mature DC-specific marker CD83, secondary lymphoid tissue-directing chemokine receptor CCR7, the MHC class-II protein (MHC-II), and costimulatory molecules CD40, CD80, and CD86. Functionally, the cells exhibit decreased Ag endocytosis, increased cell surface distribution of MHC-II, and increased secretion of IL-12 and TNF. Moreover, VEGI-stimulated DCs are able to facilitate the differentiation of CD4+ naive T cells in cocultures. These findings suggest that the anticancer activity of VEGI arises from coupling the inhibition of endothelial cell growth with the promotion of the adaptive immune mechanisms through the stimulation of DC maturation.  相似文献   

19.

Background

Legionella pneumophila pneumonia often exacerbates acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Apoptosis of alveolar epithelial cells is considered to play an important role in the pathogenesis of ALI and ARDS. In this study, we investigated the precise mechanism by which A549 alveolar epithelial cells induced by L. pneumophila undergo apoptosis. We also studied the effect of methyl prednisolone on apoptosis in these cells.

Methods

Nuclear deoxyribonucleic acid (DNA) fragmentation and caspase activation in L. pneumophila-infected A549 alveolar epithelial cells were assessed using the terminal deoxyribonucleotidyl transferase-mediated triphosphate (dUTP)-biotin nick end labeling method (TUNEL method) and colorimetric caspase activity assays. The virulent L. pneumophila strain AA100jm and the avirulent dotO mutant were used and compared in this study. In addition, we investigated whether methyl prednisolone has any influence on nuclear DNA fragmentation and caspase activation in A549 alveolar epithelial cells infected with L. pneumophila.

Results

The virulent strain of L. pneumophila grew within A549 alveolar epithelial cells and induced subsequent cell death in a dose-dependent manner. The avirulent strain dotO mutant showed no such effect. The virulent strains of L. pneumophila induced DNA fragmentation (shown by TUNEL staining) and activation of caspases 3, 8, 9, and 1 in A549 cells, while the avirulent strain did not. High-mobility group box 1 (HMGB1) protein was released from A549 cells infected with virulent Legionella. Methyl prednisolone (53.4 μM) did not influence the intracellular growth of L. pneumophila within alveolar epithelial cells, but affected DNA fragmentation and caspase activation of infected A549 cells.

Conclusion

Infection of A549 alveolar epithelial cells with L. pneumophila caused programmed cell death, activation of various caspases, and release of HMGB1. The dot/icm system, a major virulence factor of L. pneumophila, is involved in the effects we measured in alveolar epithelial cells. Methyl prednisolone may modulate the interaction of Legionella and these cells.  相似文献   

20.
Acetylsalicylic acid (ASA), a derivative from the plant hormone salicylic acid (SA), is a commonly used drug that has a dual role in animal organisms as an anti-inflammatory and anticancer agent. It acts as an inhibitor of cyclooxygenases (COXs), which catalyze prostaglandins production. It is known that ASA serves as an apoptotic agent on cancer cells through the inhibition of the COX-2 enzyme. Here, we provide evidences that ASA also behaves as an agent inducing programmed cell death (PCD) in cell cultures of the model plant Arabidopsis thaliana, in a similar way than the well-established PCD-inducing agent H(2)O(2), although the induction of PCD by ASA requires much lower inducer concentrations. Moreover, ASA is herein shown to be a more efficient PCD-inducing agent than salicylic acid. ASA treatment of Arabidopsis cells induces typical PCD-linked morphological and biochemical changes, namely cell shrinkage, nuclear DNA degradation, loss of mitochondrial membrane potential, cytochrome c release from mitochondria and induction of caspase-like activity. However, the ASA effect can be partially reverted by jasmonic acid. Taking together, these results reveal the existence of common features in ASA-induced animal apoptosis and plant PCD, and also suggest that there are similarities between the pathways of synthesis and function of prostanoid-like lipid mediators in animal and plant organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号