首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The data obtained show that, at the initial stages of hypothermia, a decrease in the oxygen consumption and carbon dioxide production, cardiac output, and heart rate occurred in accordance with the temperature coefficient. Suppression of the tissue gas exchange was unrelated to disorders in the lung gas exchange but determined rather by a progressing weakening of heart activity, decrease in the cardiac output, and increase in the general vascular peripheral resistance.  相似文献   

3.
As systemic delivery of O2 (QO2 = QT X CaO2) is reduced during progressive hemorrhage, the O2 extraction ratio [(CaO2 - CVO2)/CaO2] increases until a critical delivery is reached below which O2 uptake (VO2) becomes limited by delivery (O2 supply dependence). When tissue metabolic activity and O2 demand are increased or reduced, the critical QO2 required to maintain VO2 should rise or fall accordingly, unless other changes in the distribution of a limited QO2 precipitate the onset of O2 supply dependence at a different critical extraction ratio. We compared the critical QO2 and critical extraction ratio in 23 normothermic (38 degrees C), hyperthermic (41 degrees C), or hypothermic (34 decrees C) dogs during stepwise reduction in delivery produced by bleeding, as arterial O2 content was maintained. Dogs were anesthetized, paralyzed, and mechanically ventilated. Hypothermia reduced whole-body VO2 by 31%, whereas hyperthermia increased VO2 by 20%. The critical QO2 was significantly reduced during hypothermia (5.6 +/- 0.95 ml.min-1.kg-1) (P less than 0.05) and increased during hyperthermia (8.9 +/- 1.1) (P approximately equal to 0.06) compared with normothermic controls (7.4 +/- 1.2). The extraction ratio at the onset of supply dependency was significantly increased in hyperthermia (0.76 +/- 0.05) compared with hypothermia (0.65 +/- 0.10) (P less than 0.05), and the normothermic critical extraction was 0.71 +/- 0.1. These results suggest that higher body temperatures are associated with an improved ability to maintain a VO2 independent of QO2, since a higher fraction of the delivered O2 can be extracted before the onset of O2 supply dependence, relative to lower body temperatures.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Nitric oxide (NO) has high affinity to heme and by interaction with oxyhemoglobin (HbO2) is converted into nitrate to form methemoglobin (MetHb) as a side product. In combining with deoxy-Hb NO yields a stable molecule of nitrosyl-hemoglobin (HbFe(II)NO) that can further be converted into nitrate and hemoglobin (Hb). In addition, Hb was shown to transport NO in a form of S-nitrosohemoglobin (SNO-Hb). These features of the Hb and NO interaction are important for blood oxygen transport including hemoglobin-oxygen affinity (HOA). The present investigation was aimed to study the blood oxygen transport indices (pO2, pCO2, pH, HOA, etc.) in rats under hypothermia combined with a modification of L-arginine-NO pathway. To modify the L-arginine-NO pathway, rats were administered with N(G)-nitro-L-arginine methyl ester (L-NAME), L-arginine, or sodium nitroprusside (SNP) intravenously before cooling. A substantial impairment of oxygen delivery and development of hypoxia, with an important contribution of HOA into the latter accompanied the deep hypothermia in rats. All the experimental groups developed metabolic acidosis, less pronounced in rats treated with L-arginine only. In the experiments with a modification of the L-arginine-NO pathway, an enhanced cold resistance, attenuated oxygen deficiency, and a weaker oxyhemoglobin dissociation curve (ODC) shift leftwards were observed only after the administration of L-arginine. Neither SNP nor L-NAME had not any protective effects. L-Arginine lowered the value of standard P50 (pO2, corresponding to 50% Hb saturation with oxygen at 37 degrees C, pH 7.4, and pCO2 = 40 mmHg). The actual P50 (at actual pH, pCO2 and temperature) decreased by approximately 15 mmHg and was significantly higher than that under hypothermia without the drug treatment (21.03 +/- 0.35 vs 17.45 +/- 0.60 mmHg). NO also can contribute to this system through different mechanisms (HOA modification, vascular tone regulation, peroxynitrite formation, and effects).  相似文献   

11.
12.
13.
Effect of hypothermia on radiosensitization   总被引:1,自引:0,他引:1  
Hypothermia reduces metabolism and oxygen utilization by tissues. If the blood supply to a solid tumour can be maintained at a sufficient level, the hypoxic fraction of tumour cells may be reduced and radiosensitivity increased. This may be achieved if hyperbaric oxygen is used in combination with the hypothermia. The blood supply and oxygen tension have been measured in C3H mouse mammary tumours under hypothermia and hyperbaric oxygen, and the enhancement of radiosensitivity by hyperbaric oxygen has been estimated in mice irradiated at different temperatures with and without anaesthesia. Measurement of xenon-133 clearance showed that the blood supply of a tumour tended to increase when anaesthetized mice became hypothermic. Oxygen cathode data showed that the oxygen tension tended to be relatively higher in tumours and lower in subcutaneous tissue when mice exposed to hyperbaric oxygen became hypothermic under anaesthesia. Hyperbaric oxygen enhanced the radiation response of the tumour in terms of an increase in regrowth delay by a factor of 1.7 when the mice had been anaesthetized, whether or not they became hypothermic. A lower factor of 1.4 was obtained without anaesthesia although induced hypothermia increased the response to a small extent. We conclude that anaesthesia and hypothermia affect oxygen metabolism in tumours by different mechanisms.  相似文献   

14.
Oxygen supply was corrected in rabbits during the hepatic ischemia/reperfusion by means of different breathing mixtures: hypoxic (14.8 % O(2)+85.2 % N(2)), hyperoxic (78 % O(2)+20.2 % N(2)+ 1.8 % CO(2)), or hypercapnic (5 % CO(2) in air). Hepatic ischemia was induced for 30 min by ligation of hepatic artery, reperfusion period lasted 120 min. Indices of blood oxygen transport (p50(act), pCO(2), pH, pO(2), etc.) and prooxidant-antioxidant balance (Schiff bases, conjugated dienes, catalase, retinol, alpha-tocopherol) were measured in the blood and liver. The severity of reperfusion damage was evaluated by the activities of alanine and aspartate aminotransferases (ALT, AST) in the blood. Hepatic ischemia/reperfusion resulted in higher p50(act) in hepatic venous and mixed venous blood in all experimental groups. The changes of p50(act) were most marked in the hypercapnic group and were the weakest in the hypoxic group. The rise in p50(act) was accompanied by higher levels of lipid peroxidation products, ALT and AST in blood and liver homogenates, and by a simultaneous fall of alpha-tocopherol and retinol concentrations, except in the hypoxic group. Catalase activity at the end of reperfusion increased under normoxia, decreased under hyperoxia or hypercapnia and did not change under hypoxia. The moderate hypoxia during reperfusion was accompanied by a better balance between the mechanisms of reactive oxygen species production and inactivation that may be observed by optimal changes in p50act and reduced the hepatic damage in this pathological condition.  相似文献   

15.
We assessed the effects of cold and submergence on blood oxygen transport in common map turtles (Graptemys geographica). Winter animals were acclimated for 6-7 wk to one of three conditions at 3 degrees C: air breathing (AB-3 degrees C), normoxic submergence (NS-3 degrees C), and hypoxic (PO2=49 Torr) submergence (HS-3 degrees C). NS-3 degrees C turtles exhibited a respiratory alkalosis (pH 8.07; PCO2=7.9 Torr; [lactate]=2.2 mM) relative to AB-3 degrees C animals (pH 7.89; PCO2=13.4 Torr; [lactate]=1.1 mM). HS-3 degrees C animals experienced a profound metabolic acidosis (pH 7.30; PCO2=7.9 Torr; [lactate]=81 mM). NS-3 degrees C turtles exhibited an increased blood O2 capacity; however, isoelectric focusing revealed no seasonal changes in the isohemoglobin (isoHb) profile. Blood O2 affinity was significantly increased by cold acclimation; half-saturation pressures (P50's) for air-breathing turtles at 3 degrees and 22 degrees C were 6.5 and 18.8 Torr, respectively. P50's for winter animals submerged in normoxic and hypoxic water were 5.2 and 6.5 Torr, respectively. CO2 Bohr slopes (Delta logP50/Delta pH) were -0.15, -0.16, and -0.07 for AB-3 degrees C, NS-3 degrees C, and HS-3 degrees C turtles, respectively; the corresponding value for AB-22 degrees C was -0.37. The O2 equilibrium curve (O2EC) shape was similar for AB-3 degrees C and NS-3 degrees C turtles; Hill plot n coefficients ranged from 1.8 to 2.0. The O2EC shape for HS-3 degrees C turtles was anomalous, exhibiting high O2 affinity below P50 and a right-shifted segment above half-saturation. We suggest that increases in Hb-O2 affinity and O2 capacity enhance extrapulmonary O2 uptake by turtles overwintering in normoxic water. The anomalous O2EC shape and reduced CO2 Bohr effect of HS-3 degrees C turtles may also promote some aerobic metabolism in hypoxic water.  相似文献   

16.
The functioning of the respiratory system and oxygen-transport function of the lungs were estimated in experiments on healthy people under the effect of exogenic hypercapnia. The external respiration is activated under conditions of hypercapnia of the given degree, an increase in the total and alveolar ventilation of the lungs testifies to this fact. Age differences are found in diffusive and specific diffusive capacity of the lungs for O2, which indicates to changes in the oxygen-transport function of the lungs. In teenagers the diffusive capacity of the lungs changes due to the gas-exchange surface area and in people of middle age - due to changes in the diffusive properties of the lungs air-blood barrier.  相似文献   

17.
An analysis of thermal effects on the facilitative transport of oxygen in skeletal muscle fibers is presented. Steady-state mass and energy transport balances are written and solved analytically or numerically using a finite-difference procedure. It is shown that no significant spatial thermal gradients exist due to internal reactions or bulk conduction effects across a muscle fiber. At typical muscle conditions, it is predicted that increased global temperature reduces the fraction of oxygenated myoglobin, increases local oxygen concentrations, and increases the percentage of oxygen flux attributed to oxy-myoglobin. The maximum supportable oxygen consumption rate, mO2max, is defined as the highest consumption rate sustainable without developing anoxic regions at the center of the fiber. By considering only temperature sensitive effects within fibers, mO2max is found to increase slightly with temperature at low temperatures. This increase is due to thermal effects on the diffusion coefficients as opposed to effects associated with the kinetics of the myoglobin-oxygen reaction. If the simulations include the temperature effect associated with oxygen solubility in blood plasma, mO2max decreases with temperature. A sensitivity analysis was performed by varying the values of relevant parameters. The maximum consumption rate was least affected by parameters associated with the kinetic and equilibrium constants and most affected by the diffusion coefficients and the concentration of myoglobin.  相似文献   

18.
19.
It is shown in rats with experimental lung inflammation that the phosphorylative and uncoupling mitochondrial respiration intensity rises at acute and reverses to the normal level at subacute inflammation. At chronic inflammation the 2,4-DNP-stimulated mitochondrial respiration enhances and the ADPO coefficient lowers. At all stages of inflammation the pO2 rise in muscles after O2-inhalation is less than in healthy animals. The disturbance of O2 transport in organism may be the reason of the described low energy shift at lung inflammation.  相似文献   

20.
Initial velocities of uptake ofl-glutamic acid and 2-deoxy-d-glucose (2-Dg) have been measured in cortical synaptosomes from rats which had been exposed to oxygen at high pressure (OHP) and compared to similar measurements in normobaric controls. Exposure to OHP had no significant effect on glutamate uptake at any combination of sodium and glutamate used. In contrast, OHP reduced 2-Dg uptake by an average of 17.5%. Although Kt was little affected, OHP exposure reduced apparent maximal transport capacity by 15%. Since hyperbaria with normal pO2 had no significant effect on uptake, the effect of OHP is an oxygen effect, rather than a pressure effect. The effects of OHP on uptake do not parallel the effects of age; glutamate transport capacity was reduced in aged animals, while 2-Dg transport was unaffected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号