首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
This ultrastructural study on the localization of Ca+2 in developing skeletal muscle indicates that the formation of calcium-accumulating components begins during embryonic development. Both oxalate and pyroantimonate techniques are used to localize Ca+2 in distinct cellular components of chick pectoral and sartorius muscles. Two major sites for Ca+2 accumulation are present in ultrathin sections of embryonic and post-embryonic muscles: the terminal cisternae of the sarcoplasmic reticulum and specific lines in the I-bands. Calcium oxalate-accumulating vesicles are present in the smallest recognizable myotubes at the twelfth day of incubation, but calcium-accumulating components are not seen at myofibrillar I-band sites until the fourteenth to seventeenth days of incubation. The fact that myofibrils first form and later in development accumulate a Ca+2-binding component suggests that this Ca+2-binding component is not necessary for the formation of myofibrils, but is added to myofibrils before hatching to serve a probable regulatory role in contraction.  相似文献   

2.
In smooth muscle, Ca(2+) controls diverse activities including cell division, contraction and cell death. Of particular significance in enabling Ca(2+) to perform these multiple functions is the cell's ability to localize Ca(2+) signals to certain regions by creating high local concentrations of Ca(2+) (microdomains), which differ from the cytoplasmic average. Microdomains arise from Ca(2+) influx across the plasma membrane or release from the sarcoplasmic reticulum (SR) Ca(2+) store. A single Ca(2+) channel can create a microdomain of several micromolar near (approximately 200 nm) the channel. This concentration declines quickly with peak rates of several thousand micromolar per second when influx ends. The high [Ca(2+)] and the rapid rates of decline target Ca(2+) signals to effectors in the microdomain with rapid kinetics and enable the selective activation of cellular processes. Several elements within the cell combine to enable microdomains to develop. These include the brief open time of ion channels, localization of Ca(2+) by buffering, the clustering of ion channels to certain regions of the cell and the presence of membrane barriers, which restrict the free diffusion of Ca(2+). In this review, the generation of microdomains arising from Ca(2+) influx across the plasma membrane and the release of the ion from the SR Ca(2+) store will be discussed and the contribution of mitochondria and the Golgi apparatus as well as endogenous modulators (e.g. cADPR and channel binding proteins) will be considered.  相似文献   

3.
Using the isotope exchange technique including 45Ca, the Ca2+-binding and Ca2+-accumulating capacity of mitochondria, sarcolemma and sarcoplasmic reticulum of rat heart was studied. The ATP-independent binding of Ca2+ to isolated membrane fractions is by 1--2 orders of magnitude less than the ATP-dependent Ca2+-accumulating capacity of the fractions. The Ca2+-accumulating capacity of mitochondria is increased 6--8 fold after addition of physiological concentrations of succinate and Pi to the incubation medium. Under these conditions the ratio of Ca2+-accumulating capacity of mitochondria, sarcolemma and sarcoplasmic reticulum of the heart is 100:3,12:2,9. The initial rate of Ca2+-uptake by the sarcoplasmic reticulum is much higher in comparison with sarcolemma and mitochondria. A high Ca2+-accumulating capacity of heart mitochondria probably determines a long-term regulation of the concentration of "troponin-accessible" Ca2+ in the sarcoplasm, whereas the high initial rate of Ca2+ accumulation by the sarcoplasmic reticulum provides for a rapid decrease of Ca2+ concentration during rhythmic contractions of the heart.  相似文献   

4.
Ca(2+)-induced Ca(2+) release (CICR) from the sarcoplasmic reticulum (SR) occurs in smooth muscle as spontaneous SR Ca(2+) release or Ca(2+) sparks and, in some spiking tissues, as Ca(2+) release that is triggered by the activation of sarcolemmal Ca(2+) channels. Both processes display spatial localization in that release occurs at a higher frequency at specific subcellular regions. We have used two-photon flash photolysis (TPFP) of caged Ca(2+) (DMNP-EDTA) in Fluo-4-loaded urinary bladder smooth muscle cells to determine the extent to which spatially localized increases in Ca(2+) activate SR release and to further understand the molecular and biophysical processes underlying CICR. TPFP resulted in localized Ca(2+) release in the form of Ca(2+) sparks and Ca(2+) waves that were distinguishable from increases in Ca(2+) associated with Ca(2+) uncaging, unequivocally demonstrating that Ca(2+) release occurs subsequent to a localized rise in [Ca(2+)](i). TPFP-triggered Ca(2+) release was not constrained to a few discharge regions but could be activated at all areas of the cell, with release usually occurring at or within several microns of the site of photolysis. As expected, the process of CICR was dominated by ryanodine receptor (RYR) activity, as ryanodine abolished individual Ca(2+) sparks and evoked release with different threshold and kinetics in FKBP12.6-null cells. However, TPFP CICR was not completely inhibited by ryanodine; Ca(2+) release with distinct kinetic features occurred with a higher TPFP threshold in the presence of ryanodine. This high threshold release was blocked by xestospongin C, and the pharmacological sensitivity and kinetics were consistent with CICR release at high local [Ca(2+)](i) through inositol trisphosphate (InsP(3)) receptors (InsP(3)Rs). We conclude that CICR activated by localized Ca(2+) release bears essential similarities to those observed by the activation of I(Ca) (i.e., major dependence on the type 2 RYR), that the release is not spatially constrained to a few specific subcellular regions, and that Ca(2+) release through InsP(3)R can occur at high local [Ca(2+)](i).  相似文献   

5.
Ca2+ regulation of vascular smooth muscle   总被引:5,自引:0,他引:5  
Regulation of intracellular free Ca2+ concentrations in vascular smooth muscle is accomplished mainly by Ca2+ channels and ATP-dependent Ca2+ pumps in the plasmalemma and sarcoplasmic reticulum (SR). Ca2+ entry through the plasmalemma is apparently mediated by four different pathways: leak; receptor-operated Ca2+ channels; potential sensitive Ca2+ channels; and stretch-activated channels. The agonist releasable intracellular Ca2+ store appears to be identical with the SR. Evidence for the involvement of Ca2+-induced Ca2+ release and inositol-1,4,5-trisphosphate in the release of SR Ca2+ is discussed. Smooth muscle contractions induced by certain agonists may be further enhanced by inhibition of Ca2+ uptake by the SR and of active Ca2+ extrusion across the plasmalemma. At the moment it is not clear from a consideration of the Ca2+ regulatory mechanisms present in vascular smooth muscle how dietary Ca2+ affects vascular tone. The increased Ca2+ permeation through smooth muscle cell membranes of resistance arteries taken from spontaneously hypertensive rats may be relevant to this problem.  相似文献   

6.
Fameli N  Breemen Cv 《Protoplasma》2012,249(Z1):S39-S48
We address the importance of cytoplasmic nanospaces in Ca(2+) transport and signalling in smooth muscle cells and how quantitative modelling can shed significant light on the understanding of signalling mechanisms. Increasingly more convincing evidence supports the view that these nanospaces--nanometre-scale spaces between organellar membranes, hosting cell signalling machinery--are key to Ca(2+) signalling as much as Ca(2+) transporters and Ca(2+) storing organelles. Our research suggests that the origin of certain diseases is to be sought in the disruption of the proper functioning of cytoplasmic nanospaces. We begin with a historical perspective on the study of smooth muscle cell plasma membrane-sarcoplasmic reticulum nanospaces, including experimental evidence of their role in the generation of asynchronous Ca(2+) waves. We then summarize how stochastic modelling approaches have aided and guided our understanding of two basic functional steps leading to healthy smooth muscle cell contraction. We furthermore outline how more sophisticated and realistic quantitative stochastic modelling is now being employed not only to deepen our understanding but also to aid in the hypothesis generation for further experimental investigation.  相似文献   

7.
With the aim to elucidate mechanism of eosin Y inhibitory effect on the Ca(2+)-transporting ATPase activity of myometrial cell plasma membrane effect of this inhibitor on the maximal initial rate of ATP hydrolysis reaction, catalyzed by Ca2+, Mg(2+)-ATPase, and on the enzyme affinity for Ca2+ was studied. It was established that eosin Y decreased the rate of Ca2+, Mg(2+)-ATPase catalitic turnover determined by Ca2+ and had no effect on enzyme affinity for this cation.  相似文献   

8.
Regulation of aorta smooth muscle contraction by Ca ion requires the collaboration of the 80,000 dalton factor and tropomyosin. A method for preparing pure actin from aorta smooth muscle is described.  相似文献   

9.
Chicken gizzard smooth muscle contains large amounts of Ca2+-activated protease activity. Approximately 15 mg of purified enzyme can be obtained from 1 kg of fresh muscle. The enzyme consists of two subunits (Mr = 80,000 and 30,000) present in a 1:1 molar ratio. In the presence of CaCl2, the 80,000/30,000-dalton heterodimer (form I) is rapidly converted by limited autolysis to a 76,000/18,000-dalton species (form II). Both the 80,000- and 30,000-dalton subunits are degraded simultaneously. Moreover, the Ca2+ dependence for autolysis (K0.5 = 300 microM) is identical for both subunits. Neither the time course nor the Ca2+ dependence of the autolytic conversion reaction is altered by 10- and 20-fold molar excesses of substrate. Limited autolysis markedly reduces the Ca2+ requirement for substrate degradation. Using N-[ethyl-2-3H]maleimide-labeled 27,000-dalton cardiac myosin light chains as substrate, the Ca2+ requirement of form I was found to be quite high (K0.5 = 150 microM). Under similar conditions, the Ca2+ requirement of form II was 30-fold lower (K0.5 = 5 microM). Limited autolysis did not alter the specific activity of the enzyme. Our results demonstrate that smooth muscle contains an abundant amount of Ca2+-activated protease. Moreover, autolysis of this enzyme may play an important regulatory role by converting the native form to a species that is fully active at physiological levels of intracellular calcium ion.  相似文献   

10.
Rat uterine smooth muscle shows sustained contraction to oxytocin in Ca2+-free medium with EGTA, that is called "Ca-free contraction"(1). Participation of the rise in cytosolic free Ca2+ in this Ca-free contraction was tested. In Ca-free contraction, the cytosolic free Ca2+ level was not changed at all as measured with fura-2. Further, the chelation of cytosolic free Ca2+ with quin-2 did not at all affect Ca-free contraction. These results strongly suggest that Ca-free contraction is not triggered by Ca2+.  相似文献   

11.
12.
Recent studies on the role of nitric oxide (NO) ingastrointestinal smooth muscle have raised the possibility thatNO-stimulated cGMP could, in the absence of cGMP-dependent proteinkinase (PKG) activity, act as aCa2+-mobilizing messenger[K. S. Murthy, K.-M. Zhang, J.-G. Jin, J. T. Grider, and G. M. Makhlouf. Am. J. Physiol. 265 (Gastrointest. Liver Physiol. 28):G660-G671, 1993]. This notion was examined indispersed gastric smooth muscle cells with 8-bromo-cGMP (8-BrcGMP) andwith NO and vasoactive intestinal peptide (VIP), which stimulate endogenous cGMP. In muscle cells treated with cAMP-dependent protein kinase (PKA) and PKG inhibitors (H-89 and KT-5823), 8-BrcGMP (10 µM),NO (1 µM), and VIP (1 µM) stimulated45Ca2+release (21 ± 3 to 30 ± 1% decrease in45Ca2+cell content); Ca2+ releasestimulated by 8-BrcGMP was concentration dependent with anEC50 of 0.4 ± 0.1 µM and athreshold of 10 nM. 8-BrcGMP and NO increased cytosolic freeCa2+ concentration([Ca2+]i)and induced contraction; both responses were abolished after Ca2+ stores were depleted withthapsigargin. With VIP, which normally increases[Ca2+]iby stimulating Ca2+ influx,treatment with PKA and PKG inhibitors caused a further increase in[Ca2+]ithat reverted to control levels in cells pretreated with thapsigargin. Neither Ca2+ release norcontraction induced by cGMP and NO in permeabilized muscle cells wasaffected by heparin or ruthenium red.Ca2+ release induced by maximallyeffective concentrations of cGMP and inositol 1,4,5-trisphosphate(IP3) was additive, independent of which agent was applied first. We conclude that, in the absence ofPKA and PKG activity, cGMP stimulatesCa2+ release from anIP3-insensitive store and that itseffect is additive to that of IP3.

  相似文献   

13.
Functionally separate intracellular Ca2+ stores in smooth muscle   总被引:8,自引:0,他引:8  
In smooth muscle, release via the inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)R) and ryanodine receptors (RyR) on the sarcoplasmic reticulum (SR) controls oscillatory and steady-state cytosolic Ca(2+) concentrations ([Ca(2+)](c)). The interplay between the two receptors, itself determined by their organization on the SR, establishes the time course and spatial arrangement of the Ca(2+) signal. Whether or not the receptors are co-localized or distanced from each other on the same store or whether they exist on separate stores will significantly affect the Ca(2+) signal produced by the SR. To date these matters remain unresolved. The functional arrangement of the RyR and Ins(1,4,5)P(3)R on the SR has now been examined in isolated single voltage-clamped colonic myocytes. Depletion of the ryanodine-sensitive store, by repeated application of caffeine, in the presence of ryanodine, abolished the response to Ins(1,4,5)P(3), suggesting that Ins(1,4,5)P(3)R and RyR share a common Ca(2+) store. Ca(2+) release from the Ins(1,4,5)P(3)R did not activate Ca(2+)-induced Ca(2+) release at the RyR. Depletion of the Ins(1,4,5)P(3)-sensitive store, by the removal of external Ca(2+), on the other hand, caused only a small decrease ( approximately 26%) in caffeine-evoked Ca(2+) transients, suggesting that not all RyR exist on the common store shared with Ins(1,4,5)P(3)R. Dependence of the stores on external Ca(2+) for replenishment also differed; removal of external Ca(2+) depleted the Ins(1,4,5)P(3)-sensitive store but caused only a slight reduction in caffeine-evoked transients mediated at RyR. Different mechanisms are presumably responsible for the refilling of each store. Refilling of both Ins(1,4,5)P(3)-sensitive and caffeine-sensitive Ca(2+) stores was inhibited by each of the SR Ca(2+) ATPase inhibitors thapsigargin and cyclopiazonic acid. These results may be explained by the existence of two functionally distinct Ca(2+) stores; the first expressing only RyR and refilled from [Ca(2+)](c), the second expressing both Ins(1,4,5)P(3)R and RyR and dependent upon external Ca(2+) for refilling.  相似文献   

14.
15.
Calcium-activated potassium currents have been described in a wide variety of cell types. This report summarizes some important properties of these currents in smooth muscle and provides examples from our recent single channel recordings from human cystic artery.  相似文献   

16.
17.
Ca(2+) influx triggered by depletion of sarcoplasmic reticulum (SR) Ca(2+) stores [mediated via store-operated Ca(2+) channels (SOCC)] was characterized in enzymatically dissociated porcine airway smooth muscle (ASM) cells. When SR Ca(2+) was depleted by either 5 microM cyclopiazonic acid or 5 mM caffeine in the absence of extracellular Ca(2+), subsequent introduction of extracellular Ca(2+) further elevated [Ca(2+)](i). SOCC was insensitive to 1 microM nifedipine- or KCl-induced changes in membrane potential. However, preexposure of cells to 100 nM-1 mM La(3+) or Ni(2+) inhibited SOCC. Exposure to ACh increased Ca(2+) influx both in the presence and absence of a depleted SR. Inhibition of inositol 1,4,5-trisphosphate (IP)-induced SR Ca(2+) release by 20 microM xestospongin D inhibited SOCC, whereas ACh-induced IP(3) production by 5 microM U-73122 had no effect. Inhibition of Ca(2+) release through ryanodine receptors (RyR) by 100 microM ryanodine also prevented Ca(2+) influx via SOCC. Qualitatively similar characteristics of SOCC-mediated Ca(2+) influx were observed with cyclopiazonic acid- vs. caffeine-induced SR Ca(2+) depletion. These data demonstrate that a Ni(2+)/La(3+)-sensitive Ca(2+) influx via SOCC in porcine ASM cells involves SR Ca(2+) release through both IP(3) and RyR channels. Additional regulation of Ca(2+) influx by agonist may be related to a receptor-operated, noncapacitative mechanism.  相似文献   

18.
Ca2+-phospholipid dependent phosphorylation of smooth muscle myosin   总被引:5,自引:0,他引:5  
Isolated myosin light chain from chicken gizzard has been shown to serve as a substrate for Ca2+-activated phospholipid-dependent protein kinase. Autoradiography showed that Ca2+-activated phospholipid-dependent protein kinase phosphorylated mainly the 20,000-dalton light chain of chicken gizzard myosin. Exogenously added calmodulin had no effect on myosin light chain phosphorylation catalyzed by the enzyme. The 20,000-dalton myosin light chain, both in the isolated form and in the whole myosin form, served as the substrate for this enzyme. In contrast to the isolated myosin light chain, the light chain of whole myosin was phosphorylated to a lesser extent by the Ca2+-activated phospholipid dependent kinase. Our results suggest the involvement of phospholipid in regulating Ca2+-dependent phosphorylation of the 20,000-dalton light chain of smooth muscle myosin.  相似文献   

19.
We sought to investigate the mechanism(s) by which the oxidant H2O2 stimulates Ca2+ release from mitochondria of bovine pulmonary vascular smooth muscle tissue and to test the hypothesis that hydroxyl radical is involved in this phenomenon. Treatment of the smooth muscle tissue with 1 mM H2O2 dramatically stimulated hydroxyl radical generation as measured by methane (CH4) production by GLC using dimethylsulfoxide (DMSO) as the substrate. Pretreatment of the mitochondria with the hydroxyl radical scavanger dimethylthiourea (DMTU) prevented the increase in CH4 production caused by H2O2. In the absence of EGTA, H2O2 caused stimulation of Ca2+ release from mitochondria occurred with a lag time of about 4 min. Addition of EGTA to Ca2+ loaded mitochondria resulted an immediate loss of Ca2+ and that has been found to be augmented by H2O2. The release of Ca2+ by H2O2 did not appear to occur with concommitant increase in sucrose entry into, K+ release from, and swelling of mitochondria when the Ca2+ cycling was prevented by EGTA. These observations suggested that H2O2-mediated Ca2+ release from bovine pulmonary vascular smooth muscle tissue mitochondria occurred (i) through the involvement of hydroxyl radical; (ii) via specific pathway(s); and (iii) did not appear to happen primarily via nonspecific pore formation.Abbreviations H2O2 hydrogen peroxide - OH· hydroxyl radical - t-buOOH tert-butyl hydroperoxide - CH4 methane - GLC gas liquid chromatography - DMTU dimethylthiourea - EGTA ethylene glycol bis(-aminoethyl ether) - N Ntetraacetic acid - DMSO dimethyl sulfoxide - CH4 methane - HBPS Hank's buffered physiological saline - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - MOPS 3-(N-morpholino)propane sulfonic acid - Tris tris (hydroxymethyl aminomethane)  相似文献   

20.
Prolonged treatment with guanosine 5'-[gamma-thio]triphosphate (GTP gamma S; 5-16 h, 50 microM) of smooth muscle permeabilized with Staphylococcus aureus alpha-toxin down-regulated (abolished) the acute Ca2+ sensitization of force by GTP gamma S, AIF-4, phenylephrine, and endothelin, but not the response to phorbol dibutyrate or a phosphatase inhibitor, tautomycin. Down-regulation also abolished the GTP gamma S-induced increase in myosin light chain phosphorylation at constant [Ca2+] and was associated with extensive translocation of p21rhoA to the particulate fraction, prevented its immunoprecipitation, and inhibited its ADP ribosylation without affecting the immunodetectable content of G-proteins (p21rhoA, p21ras, G alpha q/11, G alpha i3, and G beta) or protein kinase C (types alpha, beta 1, beta 2, delta, epsilon, eta, theta, and zeta). We conclude that the loss of GTP gamma S- and agonist-induced Ca2+ sensitization through prolonged treatment with GTP gamma S is not due to a decrease in the total content of either trimeric (G alpha q/11, G alpha i3, and G beta) or monomeric (p21rhoA and p21ras) G-protein or protein kinase C but may be related to a structural change of p21rhoA and/or to down-regulation of its (yet to be identified) effector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号