共查询到20条相似文献,搜索用时 15 毫秒
1.
This ultrastructural study on the localization of Ca+2 in developing skeletal muscle indicates that the formation of calcium-accumulating components begins during embryonic development. Both oxalate and pyroantimonate techniques are used to localize Ca+2 in distinct cellular components of chick pectoral and sartorius muscles. Two major sites for Ca+2 accumulation are present in ultrathin sections of embryonic and post-embryonic muscles: the terminal cisternae of the sarcoplasmic reticulum and specific lines in the I-bands. Calcium oxalate-accumulating vesicles are present in the smallest recognizable myotubes at the twelfth day of incubation, but calcium-accumulating components are not seen at myofibrillar I-band sites until the fourteenth to seventeenth days of incubation. The fact that myofibrils first form and later in development accumulate a Ca+2-binding component suggests that this Ca+2-binding component is not necessary for the formation of myofibrils, but is added to myofibrils before hatching to serve a probable regulatory role in contraction. 相似文献
2.
In smooth muscle, Ca(2+) controls diverse activities including cell division, contraction and cell death. Of particular significance in enabling Ca(2+) to perform these multiple functions is the cell's ability to localize Ca(2+) signals to certain regions by creating high local concentrations of Ca(2+) (microdomains), which differ from the cytoplasmic average. Microdomains arise from Ca(2+) influx across the plasma membrane or release from the sarcoplasmic reticulum (SR) Ca(2+) store. A single Ca(2+) channel can create a microdomain of several micromolar near (approximately 200 nm) the channel. This concentration declines quickly with peak rates of several thousand micromolar per second when influx ends. The high [Ca(2+)] and the rapid rates of decline target Ca(2+) signals to effectors in the microdomain with rapid kinetics and enable the selective activation of cellular processes. Several elements within the cell combine to enable microdomains to develop. These include the brief open time of ion channels, localization of Ca(2+) by buffering, the clustering of ion channels to certain regions of the cell and the presence of membrane barriers, which restrict the free diffusion of Ca(2+). In this review, the generation of microdomains arising from Ca(2+) influx across the plasma membrane and the release of the ion from the SR Ca(2+) store will be discussed and the contribution of mitochondria and the Golgi apparatus as well as endogenous modulators (e.g. cADPR and channel binding proteins) will be considered. 相似文献
3.
Using the isotope exchange technique including 45Ca, the Ca2+-binding and Ca2+-accumulating capacity of mitochondria, sarcolemma and sarcoplasmic reticulum of rat heart was studied. The ATP-independent binding of Ca2+ to isolated membrane fractions is by 1--2 orders of magnitude less than the ATP-dependent Ca2+-accumulating capacity of the fractions. The Ca2+-accumulating capacity of mitochondria is increased 6--8 fold after addition of physiological concentrations of succinate and Pi to the incubation medium. Under these conditions the ratio of Ca2+-accumulating capacity of mitochondria, sarcolemma and sarcoplasmic reticulum of the heart is 100:3,12:2,9. The initial rate of Ca2+-uptake by the sarcoplasmic reticulum is much higher in comparison with sarcolemma and mitochondria. A high Ca2+-accumulating capacity of heart mitochondria probably determines a long-term regulation of the concentration of "troponin-accessible" Ca2+ in the sarcoplasm, whereas the high initial rate of Ca2+ accumulation by the sarcoplasmic reticulum provides for a rapid decrease of Ca2+ concentration during rhythmic contractions of the heart. 相似文献
4.
Ca2+ regulation of vascular smooth muscle 总被引:5,自引:0,他引:5
Regulation of intracellular free Ca2+ concentrations in vascular smooth muscle is accomplished mainly by Ca2+ channels and ATP-dependent Ca2+ pumps in the plasmalemma and sarcoplasmic reticulum (SR). Ca2+ entry through the plasmalemma is apparently mediated by four different pathways: leak; receptor-operated Ca2+ channels; potential sensitive Ca2+ channels; and stretch-activated channels. The agonist releasable intracellular Ca2+ store appears to be identical with the SR. Evidence for the involvement of Ca2+-induced Ca2+ release and inositol-1,4,5-trisphosphate in the release of SR Ca2+ is discussed. Smooth muscle contractions induced by certain agonists may be further enhanced by inhibition of Ca2+ uptake by the SR and of active Ca2+ extrusion across the plasmalemma. At the moment it is not clear from a consideration of the Ca2+ regulatory mechanisms present in vascular smooth muscle how dietary Ca2+ affects vascular tone. The increased Ca2+ permeation through smooth muscle cell membranes of resistance arteries taken from spontaneously hypertensive rats may be relevant to this problem. 相似文献
5.
We address the importance of cytoplasmic nanospaces in Ca(2+) transport and signalling in smooth muscle cells and how quantitative modelling can shed significant light on the understanding of signalling mechanisms. Increasingly more convincing evidence supports the view that these nanospaces--nanometre-scale spaces between organellar membranes, hosting cell signalling machinery--are key to Ca(2+) signalling as much as Ca(2+) transporters and Ca(2+) storing organelles. Our research suggests that the origin of certain diseases is to be sought in the disruption of the proper functioning of cytoplasmic nanospaces. We begin with a historical perspective on the study of smooth muscle cell plasma membrane-sarcoplasmic reticulum nanospaces, including experimental evidence of their role in the generation of asynchronous Ca(2+) waves. We then summarize how stochastic modelling approaches have aided and guided our understanding of two basic functional steps leading to healthy smooth muscle cell contraction. We furthermore outline how more sophisticated and realistic quantitative stochastic modelling is now being employed not only to deepen our understanding but also to aid in the hypothesis generation for further experimental investigation. 相似文献
6.
Regulation of aorta smooth muscle contraction by Ca ion requires the collaboration of the 80,000 dalton factor and tropomyosin. A method for preparing pure actin from aorta smooth muscle is described. 相似文献
7.
Limited autolysis reduces the Ca2+ requirement of a smooth muscle Ca2+-activated protease 总被引:5,自引:0,他引:5
Chicken gizzard smooth muscle contains large amounts of Ca2+-activated protease activity. Approximately 15 mg of purified enzyme can be obtained from 1 kg of fresh muscle. The enzyme consists of two subunits (Mr = 80,000 and 30,000) present in a 1:1 molar ratio. In the presence of CaCl2, the 80,000/30,000-dalton heterodimer (form I) is rapidly converted by limited autolysis to a 76,000/18,000-dalton species (form II). Both the 80,000- and 30,000-dalton subunits are degraded simultaneously. Moreover, the Ca2+ dependence for autolysis (K0.5 = 300 microM) is identical for both subunits. Neither the time course nor the Ca2+ dependence of the autolytic conversion reaction is altered by 10- and 20-fold molar excesses of substrate. Limited autolysis markedly reduces the Ca2+ requirement for substrate degradation. Using N-[ethyl-2-3H]maleimide-labeled 27,000-dalton cardiac myosin light chains as substrate, the Ca2+ requirement of form I was found to be quite high (K0.5 = 150 microM). Under similar conditions, the Ca2+ requirement of form II was 30-fold lower (K0.5 = 5 microM). Limited autolysis did not alter the specific activity of the enzyme. Our results demonstrate that smooth muscle contains an abundant amount of Ca2+-activated protease. Moreover, autolysis of this enzyme may play an important regulatory role by converting the native form to a species that is fully active at physiological levels of intracellular calcium ion. 相似文献
8.
K Matsuo T Gokita H Karibe M K Uchida 《Biochemical and biophysical research communications》1989,165(2):722-727
Rat uterine smooth muscle shows sustained contraction to oxytocin in Ca2+-free medium with EGTA, that is called "Ca-free contraction"(1). Participation of the rise in cytosolic free Ca2+ in this Ca-free contraction was tested. In Ca-free contraction, the cytosolic free Ca2+ level was not changed at all as measured with fura-2. Further, the chelation of cytosolic free Ca2+ with quin-2 did not at all affect Ca-free contraction. These results strongly suggest that Ca-free contraction is not triggered by Ca2+. 相似文献
9.
10.
H Akbarali T Nakajima D G Wyse W Giles 《Canadian journal of physiology and pharmacology》1990,68(11):1489-1494
Calcium-activated potassium currents have been described in a wide variety of cell types. This report summarizes some important properties of these currents in smooth muscle and provides examples from our recent single channel recordings from human cystic artery. 相似文献
11.
12.
Functionally separate intracellular Ca2+ stores in smooth muscle 总被引:8,自引:0,他引:8
Flynn ER Bradley KN Muir TC McCarron JG 《The Journal of biological chemistry》2001,276(39):36411-36418
In smooth muscle, release via the inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)R) and ryanodine receptors (RyR) on the sarcoplasmic reticulum (SR) controls oscillatory and steady-state cytosolic Ca(2+) concentrations ([Ca(2+)](c)). The interplay between the two receptors, itself determined by their organization on the SR, establishes the time course and spatial arrangement of the Ca(2+) signal. Whether or not the receptors are co-localized or distanced from each other on the same store or whether they exist on separate stores will significantly affect the Ca(2+) signal produced by the SR. To date these matters remain unresolved. The functional arrangement of the RyR and Ins(1,4,5)P(3)R on the SR has now been examined in isolated single voltage-clamped colonic myocytes. Depletion of the ryanodine-sensitive store, by repeated application of caffeine, in the presence of ryanodine, abolished the response to Ins(1,4,5)P(3), suggesting that Ins(1,4,5)P(3)R and RyR share a common Ca(2+) store. Ca(2+) release from the Ins(1,4,5)P(3)R did not activate Ca(2+)-induced Ca(2+) release at the RyR. Depletion of the Ins(1,4,5)P(3)-sensitive store, by the removal of external Ca(2+), on the other hand, caused only a small decrease ( approximately 26%) in caffeine-evoked Ca(2+) transients, suggesting that not all RyR exist on the common store shared with Ins(1,4,5)P(3)R. Dependence of the stores on external Ca(2+) for replenishment also differed; removal of external Ca(2+) depleted the Ins(1,4,5)P(3)-sensitive store but caused only a slight reduction in caffeine-evoked transients mediated at RyR. Different mechanisms are presumably responsible for the refilling of each store. Refilling of both Ins(1,4,5)P(3)-sensitive and caffeine-sensitive Ca(2+) stores was inhibited by each of the SR Ca(2+) ATPase inhibitors thapsigargin and cyclopiazonic acid. These results may be explained by the existence of two functionally distinct Ca(2+) stores; the first expressing only RyR and refilled from [Ca(2+)](c), the second expressing both Ins(1,4,5)P(3)R and RyR and dependent upon external Ca(2+) for refilling. 相似文献
13.
Interaction of Ca2+ with blowfly flight muscle mitochondria 总被引:10,自引:0,他引:10
E Carafoli R G Hansford B Sackton A L Lehninger 《The Journal of biological chemistry》1971,246(4):964-972
14.
Down-regulation of G-protein-mediated Ca2+ sensitization in smooth muscle. 总被引:1,自引:0,他引:1
下载免费PDF全文

M C Gong H Fujihara L A Walker A V Somlyo A P Somlyo 《Molecular biology of the cell》1997,8(2):279-286
Prolonged treatment with guanosine 5'-[gamma-thio]triphosphate (GTP gamma S; 5-16 h, 50 microM) of smooth muscle permeabilized with Staphylococcus aureus alpha-toxin down-regulated (abolished) the acute Ca2+ sensitization of force by GTP gamma S, AIF-4, phenylephrine, and endothelin, but not the response to phorbol dibutyrate or a phosphatase inhibitor, tautomycin. Down-regulation also abolished the GTP gamma S-induced increase in myosin light chain phosphorylation at constant [Ca2+] and was associated with extensive translocation of p21rhoA to the particulate fraction, prevented its immunoprecipitation, and inhibited its ADP ribosylation without affecting the immunodetectable content of G-proteins (p21rhoA, p21ras, G alpha q/11, G alpha i3, and G beta) or protein kinase C (types alpha, beta 1, beta 2, delta, epsilon, eta, theta, and zeta). We conclude that the loss of GTP gamma S- and agonist-induced Ca2+ sensitization through prolonged treatment with GTP gamma S is not due to a decrease in the total content of either trimeric (G alpha q/11, G alpha i3, and G beta) or monomeric (p21rhoA and p21ras) G-protein or protein kinase C but may be related to a structural change of p21rhoA and/or to down-regulation of its (yet to be identified) effector. 相似文献
15.
Ca2+ currents in cerebral artery smooth muscle cells of rat at physiological Ca2+ concentrations 总被引:1,自引:0,他引:1
下载免费PDF全文

《The Journal of general physiology》1996,107(4):459-472
Single Ca2+ channel and whole cell currents were measured in smooth muscle cells dissociated from resistance-sized (100-microns diameter) rat cerebral arteries. We sought to quantify the magnitude of Ca2+ channel currents and activity under the putative physiological conditions of these cells: 2 mM [Ca2+]o, steady depolarizations to potentials between -50 and -20 mV, and (where possible) without extrinsic channel agonists. Single Ca2+ channel conductance was measured over a broad range of Ca2+ concentrations (0.5-80 mM). The saturating conductance ranged from 1.5 pS at 0.5 mM to 7.8 pS at 80 mM, with a value of 3.5 pS at 2 mM Ca (unitary currents of 0.18 pA at -40 mV). Both single channel and whole cell Ca2+ currents were measured during pulses and at steady holding potentials. Ca2+ channel open probability and the lower limit for the total number of channels per cell were estimated by dividing the whole-cell Ca2+ currents by the single channel current. We estimate that an average cell has at least 5,000 functional channels with open probabilities of 3.4 x 10(-4) and 2 x 10(-3) at -40 and -20 mV, respectively. An average of 1-10 (-40 mV and -20 mV, respectively) Ca2+ channels are thus open at physiological potentials, carrying approximately 0.5 pA steady Ca2+ current at -30 mV. We also observed a very slow reduction in open probability during steady test potentials when compared with peak pulse responses. This 4- 10-fold reduction in activity could not be accounted for by the channel's normal inactivation at our recording potentials between -50 and -20 mV, implying that an additional slow inactivation process may be important in regulating Ca2+ channel activity during steady depolarization. 相似文献
16.
Ca2+ signaling, mitochondria and cell death 总被引:1,自引:0,他引:1
In the complex interplay that allows different signals to be decoded into activation of cell death, calcium (Ca2+) plays a significant role. In all eukaryotic cells, the cytosolic concentration of Ca2+ ions ([Ca2+]c) is tightly controlled by interactions among transporters, pumps, channels and binding proteins. Finely tuned changes in [Ca2+]c modulate a variety of intracellular functions ranging from muscular contraction to secretion, and disruption of Ca2+ handling leads to cell death. In this context, Ca2+ signals have been shown to affect important checkpoints of the cell death process, such as mitochondria, thus tuning the sensitivity of cells to various challenges. In this contribution, we will review (i) the evidence supporting the involvement of Ca2+ in the three major process of cell death: apoptosis, necrosis and autophagy (ii) the complex signaling interplay that allows cell death signals to be decoded into mitochondria as messages controlling cell fate. 相似文献
17.
18.
Using flow cytometric analysis and potential-sensitive fluorescent dye TMRM Ca2+ -induced changes of membrane potential of isolated smooth muscle mitochondria were studied. It was shown, that Ca2+ (100 microM) addition to the incubation medium induced mitochondrial membrane depolarization that probably could be explained by Ca2+/H+ -exchanger activation which functioning lead to membrane potential dissipation. In the case of ruthenium red (10 microM) preliminary presence in incubation medium, Ca2+ (100 microM) addition did not lead to membrane potential dissipation. Hence, membrane potential dissipation was caused by an increase of matrix Ca2+ concentration. In the presence of Mg2+ (3 mM) and ATP (3 mM), Ca2+ addition did not cause depolarization. It was supposed that in this case ATP synthase acted in the opposite direction as H+ -pump and prevented from mitochondrial membrane potential dissipation. Thus, the flow cytometry method allows to register membrane potential of isolated smooth muscle mitochondria and also to test the effectors, capable to modulate this parameter. 相似文献
19.
Lo YK Cheng JS Wang JL Lee KC Chou KJ Chang HT Tang KY Jan CR 《The Chinese journal of physiology》2001,44(1):19-24
The effect of fendiline, an anti-anginal drug, on cytosolic free Ca2+ levels ([Ca2+]i) in A10 smooth muscle cells was explored by using fura-2 as a Ca2+ indicator. Fendiline at concentrations between 10-50 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 of 20 microM. External Ca2+ removal reduced the Ca2+ signal by 75%. Addition of 3 mM Ca2+ increased [Ca2+]i in cells pretreated with fendiline in Ca2+-free medium. The 50 microM fendiline-induced [Ca2+]i increase in Ca2+-containing medium was inhibited by 10 microM of La3+, nifedipine, or verapamil. In Ca2+-free medium, pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) to deplete the endoplasmic reticulum Ca2+ store partly inhibited 50 microM fendiline-induced Ca2+ release; whereas pretreatment with 50 microM fendiline abolished 1 microM thapsigargin-induced Ca2+ release. Inhibition of phospholipase C activity with 2 microM U73122 did not alter 50 microM fendiline-induced Ca2+ release. Incubation with 50 microM fendiline for 10-30 min decreased cell viability by 10-20%. Together, the findings indicate that in smooth muscle cells fendiline induced [Ca2+]i increases. Fendiline acted by activating Ca2+ influx via L-type Ca2+ channels, and by releasing internal Ca2+ in a phospholipase C-independent manner. Prolonged exposure of cells to fendiline induced cell death. 相似文献
20.
目的:探讨大鼠结肠平滑肌细胞是否存在钙库操纵性通道(SOC)。方法:荧光探针Fura-2/AM标记细胞内游离Ca2+后,用荧光分光光度计检测毒胡萝卜素(thapsigargin)和咖啡因(caffeine)耗竭胞内钙库后激活的SOC通道对酶解分离的大鼠结肠平滑肌细胞[Ca2+]i的影响。结果:在无Ca2+缓冲液中,thapsigargin(1μmol/L)以及caf-feine(10 mmol/L)分别使[Ca2+]i由静息时(68.32±3.43)nmol/L升高至(240.85±12.65)nmol/L(、481.25±34.77)nmol/L,继之,向细胞外液中引入两种浓度的Ca2+(1.5 mmol/L和3.0 mmol/L),导致[Ca2+]i进一步升高,分别为(457.55±19.80)nmol/L、(1005.93±54.62)nmol/L;(643.88±34.65)nmol/L、(920.16±43.25)nmol/L。且上述升高效应对维拉帕米(verapamil,5μmol/L)以及KCl引起的细胞膜去极化不敏感,但可被La3+(1 mmol/L)抑制。结论:在酶解分离的大鼠结肠平滑肌细胞上,存在胞内钙库耗竭激活的SOC通道,为支持在电兴奋性细胞上存在库容性Ca2+内流提供了实验和理论依据。 相似文献