首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The annexins are a multigene family of Ca(2+)- and charged phospholipid-binding proteins. Although they have been ascribed with diverse functions, there is no consensus about the role played by this family as a whole. We have mapped the Ca(2+)-induced translocations of four members of the annexin family and of two truncated annexins in live cells, and demonstrated that these proteins interact with the plasma membrane as well as with internal membrane systems in a highly coordinated manner. Annexin 2 was the most Ca(2+) sensitive of the studied proteins, followed by annexins 6, 4 and 1. The calcium sensitivity of annexin 2 increased further following co-expression with S100A10. Upon elevation of [Ca(2+)](i), annexins 2 and 6 translocated to the plasma membrane, whereas annexins 4 and 1 also became associated with intracellular membranes and the nuclear envelope. The NH(2)-terminus had a modulatory effect on plasma membrane binding: its truncation increased the Ca(2+) sensitivity of annexin 1, and decreased that of annexin 2. Given the fact that several annexins are present within any one cell, it is likely that they form a sophisticated [Ca(2+)] sensing system, with a regulatory influence on other signaling pathways.  相似文献   

2.
S100 proteins are a group of EF-hand calcium-signaling proteins, many of which interact with members of the calcium- and phospholipid-binding annexin family of proteins. This calcium-sensitive interaction enables two neighboring membrane surfaces, complexed to different annexin proteins, to be brought into close proximity for membrane reorganization, using the S100 protein as a bridging molecule. S100A11 and S100A10 are two members of the S100 family found to interact with the N-termini of annexins A1 and A2, respectively. Despite the high degree of structural similarity between these two complexes and the sequences of the peptides, earlier studies have shown that there is little or no cross-reactivity between these two S100s and the annexin peptides. In the current work the specificity and the affinity of the interaction of the N-terminal sequences of annexins A1 and A2 with Ca2+-S100A11 were investigated. Through the use of alanine-scanning peptide array experiments and NMR spectroscopy, an approximate 5-fold tighter interaction was identified between Ca2+-S100A11 and annexin A2 (approximately 3 microM) compared to annexin A1 (approximately 15 microM). Chemical shift mapping revealed that the binding site for annexin A2 on S100A11 was similar to that observed for the annexin A1 but with distinct differences involving the C-terminus of the annexin A2 peptide. In addition, kinetic measurements based on NMR titration data showed that annexin A2 binding to Ca2+-S100A11 occurs at a comparable rate (approximately 120 s(-1)) to that observed for membrane fusion processes such as endo- and exocytosis.  相似文献   

3.
The Ca2+- and lipid-binding protein annexin 2, which resides in a tight heterotetrameric complex with the S100 protein S100A10 (p11), has been implicated in the structural organization and dynamics of endosomal membranes. To elucidate the function of annexin 2 and S100A10 in endosome organization and trafficking, we used RNA-mediated interference to specifically suppress annexin 2 and S100A10 expression. Down-regulation of both proteins perturbed the distribution of transferrin receptor- and rab11-positive recycling endosomes but did not affect uptake into sorting endosomes. The phenotype was highly specific and could be rescued by reexpression of the N-terminal annexin 2 domain or S100A10 in annexin 2- or S100A10-depleted cells, respectively. Whole-mount immunoelectron microscopy of the aberrantly localized recycling endosomes in annexin 2/S100A10 down-regulated cells revealed extensively bent tubules and an increased number of endosome-associated clathrin-positive buds. Despite these morphological alterations, the kinetics of transferrin uptake and recycling was not affected to a significant extent, indicating that the proper positioning of recycling endosomes is not a rate-limiting step in transferrin recycling. The phenotype generated by this transient loss-of-protein approach shows for the first time that the annexin 2/S100A10 complex functions in the intracellular positioning of recycling endosomes and that both subunits are required for this activity.  相似文献   

4.
In this report, we have focused our attention on identifying intracellular mammalian proteins that bind S100A12 in a Ca2+-dependent manner. Using S100A12 affinity chromatography, we have identified cytosolic NADP+-dependent isocitrate dehydrogenase (IDH), fructose-1,6-bisphosphate aldolase A (aldolase), glyceraldehyde-3-phosphate dehydrogenese (GAPDH), annexin V, S100A9, and S100A12 itself as S100A12-binding proteins. Immunoprecipitation experiments indicated the formation of stable complexes between S100A12 and IDH, aldolase, GAPDH, annexin V and S100A9 in vivo. Surface plasmon resonance analysis showed that the binding to S100A12, of S100A12, S100A9 and annexin V, was strictly Ca2+-dependent, whereas that of GAPDH and IDH was only weakly Ca2+-dependent. To localize the site of S100A12 interaction, we examined the binding of a series of C-terminal truncation mutants to the S100A12-immobilized sensor chip. The results indicated that the S100A12-binding site on S100A12 itself is located at the C-terminus (residues 87-92). However, cross-linking experiments with the truncation mutants indicated that residues 87-92 were not essential for S100A12 dimerization. Thus, the interaction between S100A12 and S100A9 or immobilized S100A12 should not be viewed as a typical S100 homo- or heterodimerization model. Ca2+-dependent affinity chromatography revealed that C-terminal residues 75-92 are not necessary for the interaction of S100A12 with IDH, aldolase, GAPDH and annexin V. To analyze the functional properties of S100A12, we studied its action in protein folding reactions in vitro. The thermal aggregation of IDH or GAPDH was facilitated by S100A12 in the absence of Ca2+, whereas in the presence of Ca2+ the protein suppressed the aggregation of aldolase to less than 50%. These results suggest that S100A12 may have a chaperone/antichaperone-like function which is Ca2+-dependent.  相似文献   

5.
S100A11 is a member of the S100 family of EF-hand Ca2+-binding proteins, which is expressed in smooth muscle and other tissues. Ca2+ binding to S100A11 induces a conformational change that exposes a hydrophobic surface for interaction with target proteins. Affinity chromatography with immobilized S100A11 was used to isolate a 70-kDa protein from smooth muscle that bound to S100A11 in a Ca2+-dependent manner and was identified by mass spectrometry as annexin A6. Direct Ca2+-dependent interaction between S100A11 and annexin A6 was confirmed by affinity chromatography of the purified bacterially expressed proteins, by gel overlay of annexin A6 with purified S100A11, by chemical cross-linking, and by coprecipitation of S100A11 with annexin A6 bound to liposomes. The expression of S100A11 and annexin A6 in the same cell type was verified by RT-PCR and immunocytochemistry of isolated vascular smooth muscle cells. The site of binding of S100A11 on annexin A6 was investigated by partial tryptic digestion and deletion mutagenesis. The unique NH2 terminal head region of annexin A6 was not required for S100A11 binding, but binding sites were identified in both NH2- and COOH-terminal halves of the molecule. We hypothesize that an agonist-induced increase in cytosolic free [Ca2+] leads to formation of a complex of S100A11 and annexin A6, which forms a physical connection between the plasma membrane and the cytoskeleton, or plays a role in the formation of signaling complexes at the level of the sarcolemma. smooth muscle; protein-protein interaction  相似文献   

6.
The annexins, a family of Ca(2+)- and lipid-binding proteins, are involved in a range of intracellular processes. Recent findings have implicated annexin A1 in the resealing of plasmalemmal injuries. Here, we demonstrate that another member of the annexin protein family, annexin A6, is also involved in the repair of plasmalemmal lesions induced by a bacterial pore-forming toxin, streptolysin O. An injury-induced elevation in the intracellular concentration of Ca(2+) ([Ca(2+)](i)) triggers plasmalemmal repair. The highly Ca(2+)-sensitive annexin A6 responds faster than annexin A1 to [Ca(2+)](i) elevation. Correspondingly, a limited plasmalemmal injury can be promptly countered by annexin A6 even without the participation of annexin A1. However, its high Ca(2+) sensitivity makes annexin A6 highly amenable to an unproductive binding to the uninjured plasmalemma; during an extensive injury accompanied by a massive elevation in [Ca(2+)](i), its active pool is severely depleted. In contrast, annexin A1 with a much lower Ca(2+) sensitivity is ineffective at the early stages of injury; however, it remains available for the repair even at high [Ca(2+)](i). Our findings highlight the role of the annexins in the process of plasmalemmal repair; a number of annexins with different Ca(2+)-sensitivities provide a cell with the means to react promptly to a limited injury in its early stages and, at the same time, to withstand a sustained injury accompanied by the continuous formation of plasmalemmal lesions.  相似文献   

7.
Expression of S100A6 (Calcyclin), a member of the S100 family and of Zn(2+)-binding proteins is elevated in a number of malignant tumors. In vitro the protein associates with several actin-binding proteins and annexins in a Ca(2+)-dependent manner. We have now studied the subcellular localization of S100A6 using a new, specific monoclonal antibody. Immunofluorescence microscopy of unfixed, ultrathin, frozen sections demonstrated a dual localization of S100A6 at the nuclear envelope and the plasma membrane of porcine smooth muscle only in the presence of Ca(2+). The same localization was found by immunofluorescence and immunogold electron microscopy as well as by confocal laser scanning microscopy with cultured, fixed, human CaKi-2 and porcine ST interphase cells. Upon cell division, however, S100A6 was found exclusively in the cytoplasm. Cell fractionation studies showed that S100A6 was present in the microsomal fraction in the presence of Ca(2+) and was released from this fraction by the addition of EGTA/EDTA but not by Triton X-100. The data demonstrate that S100A6 is localized both at the plasma membrane and the nuclear envelope in vivo and suggest a Ca(2+)-dependent interaction with annexins or other components of the nuclear envelope.  相似文献   

8.
Hepatitis B virus (HBV) polymerase (Pol) interacts with cellular chaperone proteins and thereby performs multiple functions necessary for viral replication. Yeast two-hybrid analysis was applied to identify additional cellular targets required for HBV Pol function. HBV Pol interacted with S100A10 (p11), a Ca(2+)-modulated protein previously shown to bind to annexin II. The interaction between HBV Pol and p11 was confirmed by co-immunoprecipitation of the two proteins synthesized either in vitro or in transfected cells and by inhibition of the DNA polymerase activity of HBV Pol by p11. Immunofluorescence analysis of transfected human cell lines revealed that, although most HBV Pol and p11 was restricted to the cytoplasm, a small proportion of each protein colocalized as nuclear speckles; HBV Pol was not detected in the nucleus in the absence of p11. The HBV Pol-p11 nuclear speckles coincided with nuclear bodies containing the promyelocytic leukemia protein PML. Furthermore, the association of HBV Pol-p11 with PML was increased by exposure of cells to EGTA and inhibited by valinomycin. These results suggest a role for p11 in modulation of HBV Pol function and implicate PML nuclear bodies and intracellular Ca(2+) in viral replication.  相似文献   

9.
TRPV5 and TRPV6 constitute the Ca(2+) influx pathway in a variety of epithelial cells. Here, we identified S100A10 as the first auxiliary protein of these epithelial Ca(2+) channels using yeast two-hybrid and GST pull-down assays. This S100 protein forms a heterotetrameric complex with annexin 2 and associates specifically with the conserved sequence VATTV located in the C-terminal tail of TRPV5 and TRPV6. Of these five amino acids, the first threonine plays a crucial role since the corresponding mutants (TRPV5 T599A and TRPV6 T600A) exhibited a diminished capacity to bind S100A10, were redistributed to a subplasma membrane area and did not display channel activity. Using GST pull-down and co-immunoprecipitation assays we demonstrated that annexin 2 is part of the TRPV5-S100A10 complex. Furthermore, the S100A10-annexin 2 pair colocalizes with the Ca(2+) channels in TRPV5-expressing renal tubules and TRPV6-expressing duodenal cells. Importantly, downregulation of annexin 2 using annexin 2-specific small interfering RNA inhibited TRPV5 and TRPV6-mediated currents in transfected HEK293 cells. In conclusion, the S100A10-annexin 2 complex plays a crucial role in routing of TRPV5 and TRPV6 to plasma membrane.  相似文献   

10.
Annexin A5 is a Ca2+-binding protein which is involved in membrane organization and dynamics. As recent data suggest a role of annexin A5 in cancer we aimed to gain more insight into the biological function of endogenous annexin A5 and assessed its possible influence on proliferation and invasion capacity. We down-regulated annexin A5 by RNA interference in HaCaT keratinocytes, squamous carcinoma cell line A431 as well as in a primary cell culture of a human oral carcinoma. Hereby, we detected reduced migration and invasion capacity of HaCaT cells which was even stronger in the oral carcinoma. To determine target genes of annexin A5 we used a metastasis specific microarray. Thereby, genes implicated in cell motility including S100A4, TIMP-3, and RHOC were observed to be regulated. These deregulations were confirmed by RT-PCR or western blots, respectively. These observations suggest that the invasion capacity, a main characteristic of tumors, is at least partially regulated by annexin A5 in oral carcinoma.  相似文献   

11.
Annexin VI is a widely expressed calcium- and phospholipid-binding protein that lacks a clear physiological role. We now report that A431 cells expressing annexin VI are defective in their ability to sustain elevated levels of cytosolic Ca(2+) following stimulation with EGF. Other aspects of EGF receptor signaling, such as protein tyrosine phosphorylation and induction of c-fos are normal in these cells. However, EGF-mediated membrane hyperpolarization is attenuated and Ca(2+) entry abolished in cells expressing annexin VI. This effect of annexin VI was only observed for the larger of the two annexin VI splice forms, the smaller splice variant had no discernable effect on either cellular phenotype or growth rate. Inhibition of Ca(2+) influx was specific for the EGF-induced pathway; capacitative Ca(2+) influx initiated by emptying of intracellular stores was unaffected. These results provide the first evidence that the two splice forms of annexin VI have different functions.  相似文献   

12.
Atenolol is a beta(1)-selective drug, which exerts greater blocking activity on beta(1)-adrenoreceptors than on beta(2)-adrenoreceptors, with the S-enantiomer being more active than R-enantiomer. The aim of this study was to investigate the proteins with differential protein expression levels in the proteome of vascular smooth muscle cells (A7r5) incubated separately with individual enantiomers of atenolol using an iTRAQ-coupled two-dimensional LC-MS/MS approach. Our results indicated that some calcium-binding proteins such as calmodulin, protein S100-A11, protein S100-A4, and annexin A6 were down-regulated and showed relatively lower protein levels in cells incubated with the S-enantiomer of atenolol than those incubated with the R-enantiomer, whereas metabolic enzymes such as aspartate aminotransferase, glutathione S-transferase P, NADH-cytochrome b(5) reductase, and alpha-N-acetylgalactosaminidase precursor were up-regulated and displayed higher protein levels in cells incubated with the S-enantiomer relative to those incubated with the R-enantiomer. The involvement of NADH-cytochrome b(5) reductase in the intracellular anabolic activity was validated by NAD+/NADH assay with a higher ratio of NAD+/NADH correlating with a higher proportion of NAD+. The down-regulation of the calcium-binding proteins was possibly involved in the lower intracellular Ca2+ concentration in A7r5 cells incubated with the S-enantiomer of atenolol. Ca2+ signals transduced by calcium-binding proteins acted on cytoskeletal proteins such as nestin and beta-tropomyosin, which can play a complex role in phenotypic modulation and regulation of the cytoskeletal modeling. Our preliminary results thus provide molecular evidence on the metabolic effect and possible link of calcium-binding proteins with treatment of hypertension associated with atenolol.  相似文献   

13.
TRPM7 is an unusual bifunctional protein consisting of an α-kinase domain fused to a TRP ion channel. Previously, we have identified annexin A1 as a substrate for TRPM7 kinase and found that TRPM7 phosphorylates annexin A1 at Ser5 within the N-terminal α-helix. Annexin A1 is a Ca(2+)-dependent membrane binding protein, which has been implicated in membrane trafficking and reorganization. The N-terminal tail of annexin A1 can interact with either membranes or S100A11 protein, and it adopts the conformation of an amphipathic α-helix upon these interactions. Moreover, the existing evidence indicates that the formation of an α-helix is essential for these interactions. Here we show that phosphorylation at Ser5 prevents the N-terminal peptide of annexin A1 from adopting an α-helical conformation in the presence of membrane-mimetic micelles as well as phospholipid vesicles. We also show that phosphorylation at Ser5 dramatically weakens the binding of the peptide to S100A11. Our data suggest that phosphorylation at Ser5 regulates the interaction of annexin A1 with membranes as well as S100A11 protein.  相似文献   

14.
Global Ca2+ transients have been observed to precede nuclear envelope breakdown and the onset of anaphase in Swiss 3T3 fibroblasts in 8% (vol/vol) FBS. The occurrence of these Ca2+ transients was dependent on intracellular stores. These Ca2+ transients could be (a) abolished by serum removal without halting mitosis, and (b) eliminated by increasing intracellular Ca2+ buffering capacity through loading the cells with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) buffer, via the tetra(acetoxymethyl) ester, without hindering the transition into anaphase. Microinjection of sufficient concentrations of BAPTA buffer could block nuclear envelope breakdown. Pulses of Ca2+ generated by flash photolysis of intracellularly trapped nitr-5, a "caged" Ca2+, could precipitate precocious nuclear envelope breakdown in prophase cells. In metaphase cells, photochemically generated Ca2+ pulses could cause changes in the appearance of the chromosomes, but the length of time required for cells to make the transition from metaphase to anaphase remained essentially unchanged regardless of whether a Ca2+ pulse was photoreleased during metaphase. The results from these photorelease experiments were not dependent on the presence of serum in the medium. Discharging intracellular Ca2+ stores with ionomycin in the presence of 1.8 mM extracellular Ca2+ doubled the time for cells to pass from late metaphase into anaphase, whereas severe Ca2+ deprivation by treatment with ionomycin in EGTA-containing medium halted mitosis. Our results collectively indicate that Ca2+ is actively involved in nuclear envelope breakdown, but Ca2+ signals are likely unnecessary for the metaphase-anaphase transition in Swiss 3T3 fibroblasts. Additional studies of intracellular Ca2+ concentrations in mitotic REF52 and PtK1 cells revealed that Ca2+ transients are not observed at all mitotic stages in all cells. The absence of observable global Ca2+ transients, where calcium buffers can block and pulses of Ca2+ can advance mitotic stages, may imply that the relevant Ca2+ movements are too local to be detected.  相似文献   

15.
The calcium binding S100A8/A9 complex (MRP8/14; calgranulin) is considered as an important proinflammatory mediator in acute and chronic inflammation and has recently gained attention as a molecular marker up-regulated in various human cancers. Here, we report that S100A8/A9 is expressed in breast cancer cell lines and is up-regulated by interleukin-1beta and tumor necrosis factor-alpha in SKBR3 and MCF-7 cells. We identified the phospholipid-binding protein annexin A6 as a potential S100A8/A9 binding protein by affinity chromatography. This finding was verified by Southwestern overlay experiments and by coimmunoprecipitation with the S100A8/A9-specific monoclonal antibody 27E10. Immunocytochemical experiments demonstrated that S100A8/A9 and annexin A6 colocalize in SKBR3 breast cancer cells predominantly in membranous structures. Upon calcium influx both S100A8/A9 and annexin A6 are exposed on the cell surface of SKBR3 cells. Subcellular fractionation studies suggested that after A23187 stimulation membrane association of S100A8/A9 is not enhanced. However, both S100A8/A9 and annexin A6 are exposed on the cell surface of SKBR3 cells upon calcium influx. Experiments with artificial liposomes indicated that S100A8/A9 is able to associate with membranes independently of both annexin A6 and independently of calcium. Finally, cell surface expression of S100A8/A9 could not be observed in A23187-treated A431 and HaCaT cells. Both cell lines are known to be devoid of annexin A6. Repression of annexin A6 expression by small interfering RNA in SKBR3 cells abolishes the cell surface exposition of S100A8/A9 upon calcium influx, suggesting that annexin A6 contributes to the calcium-dependent cell surface exposition of the membrane associated-S100A8/A9 complex.  相似文献   

16.
S100A11 is a dimeric EF-hand calcium-binding protein. Calcium binding to S100A11 results in a large conformational change that uncovers a broad hydrophobic surface used to interact with phospholipid-binding proteins (annexins A1 and A2) and facilitate membrane vesiculation events. In contrast with other S100 proteins, S100A10 is unable to bind calcium due to deletion and substitution of calcium-ligating residues. Despite this, calcium-free S100A10 assumes an 'open' conformation that is very similar to S100A11 in its calcium-bound state. To understand how S100A10 is able to adopt an open conformation in the absence of calcium, seven chimaeric proteins were constructed where regions from calcium-binding sites I and II, and helices II-IV in S100A11 were replaced with the corresponding regions of S100A10. The chimaeric proteins having substitutions in calcium-binding site II displayed increased hydrophobic surface exposure as assessed by bis-ANS (4,4'-dianilino-1,1'-binaphthyl-5,5'disulfonic acid, dipotassium salt) fluorescence and phenyl-Sepharose binding in the absence of calcium. This response is similar to that observed for Ca2+-S100A11 and calcium-free S100A10. Further, this substitution resulted in calcium-insensitive binding to annexin A2 for one chimaeric protein. The results indicate that residues within site II are important in stabilizing the open conformation of S100A10 and presentation of its target binding site. In contrast, S100A11 chimaeric proteins with helical substitutions displayed poorer hydrophobic surface exposure and, consequently, unobservable annexin A2 binding. The present study represents a first attempt to systematically understand the molecular basis for the calcium-insensitive open conformation of S100A10.  相似文献   

17.
Annexins are Ca(2+)-binding, membrane-fusogenic proteins with diverse but poorly understood functions. Here, we show that during cell cycle progression annexin 11 translocates from the nucleus to the spindle poles in metaphase and to the spindle midzone in anaphase. Annexin 11 is recruited to the midbody in late telophase, where it forms part of the detergent-resistant matrix that also contains CHO1. To investigate the significance of these observations, we used RNA interference to deplete cells of annexin 11. A combination of confocal and video time-lapse microscopy revealed that cells lacking annexin 11 fail to establish a functional midbody. Instead, daughter cells remain connected by intercellular bridges that contain bundled microtubules and cytoplasmic organelles but exclude normal midbody components such as MKLP1 and Aurora B. Annexin 11-depleted cells failed to complete cytokinesis and died by apoptosis. These findings demonstrate an essential role for annexin 11 in the terminal phase of cytokinesis.  相似文献   

18.
研究核外Ca~(2+)浓度对核Ca~(2+)的影响,及细胞核Ca~(2+)摄取和释放的关系,以探讨核Ca~(2+)转运的调节机制。采用差速离心和密度梯度离心法分离纯化心肌细胞核,以Fluo-4/AM荧光指示剂负载心肌细胞核,应用激光共聚焦扫描显微镜和荧光分光光度计进行观察和测定。结果显示,分离纯化的成年大鼠心肌细胞核内自由[Ca~(2+)]随着核外[Ca~(2+)]的增加而逐渐增加,孵育液[Ca~(2+)]为1000 nmol/L达高峰,但二者增加的程度并不一致,之后随核外[Ca~(2+)]浓度的增加而呈降低趋势。ATP和100—600nmol/L的核外游离Ca~(2+),使心肌细胞核显示核被膜腔Ca~(2+)荧光,ATP和1000nmol/L的核外游离Ca~(2+)则进一步引起核浆内的Ca~(2+)荧光强度升高。荧光染色观察可见IP_3受体染色主要位于核内膜,而钙泵和ryanodine受体染色主要位于核外膜。IP_3和Ryancodine使核Ca~(2+)短暂升高1.68倍和1.93倍(P<0.001),而钙泵抑制剂Thapsigargin和IP_3受体抑制剂Heparin则分别使核Ca~(2+)降低64%和35.6%(p<0.05)。ryanodine使IP_3升高的核Ca~(2+)显著回落至正常水平以下(p<0.001)。Thapsigargin不能阻断IP_3和Ryanodine所致的核Ca~(2+)释放增加(p<0.05),但事先采用钙泵抑制剂Thapsigargin预处理心肌细胞核,则能显著的阻断IP_3和Ryanodine所致的核Ca~(2+)升高作用(Ca~(2+)释放作用)(p<0.05)。结果提示大鼠心肌细胞核可能也是细胞内的钙库之一,心肌细胞核上存在Ca~(2+)-ATPase、ryanodine受体和IP_3受体等Ca~(2+)转运系统,可能参与核Ca~(2+)摄取和释放的调节。  相似文献   

19.
心肌细胞核Ca^2+库特点及其调节的离体研究   总被引:1,自引:0,他引:1  
To investigate the regulation of Ca2+ in the isolated cardiac nuclei from rats which may illuminated the mechanism of nuclear calcium transport system. Elocity and isopyknic gradient centrifugation were employed to fractionate rat cardiac nuclei. Then fluo-4 confocal microscopy techniques was used to verify the changes of nuclear Ca2+. There are calcium-dependent Ca2+ uptake in the cardiac nuclear obtained from normal rats. The accumulation Ca2+ of cardiac nuclei in vitro from the incubating medium were not consistent with free [Ca2+] in incubating medium. The nuclear envelope was initially loaded with Ca2+ (1 mmol/L ATP and approximately 100 nmol/L Ca2+), Adequate Ca2+ loading was next confirmed by imaging the nuclear envelope and nucleoplasm. Exposure of Ca2+ -loaded nuclei to IP3, ryanodine or ryanodine + thapsigargin, respectively, resulted in a rapid and transient elevation of nucleoplasmic Ca2+ free concentration, this effects were abolished by pretreatment of cardiac nuclei with Ca2+ -ATPase inhibitor thapsigargin. Thapsigargin and IP3 receptor antagonist heparin induced nucleoplasmic Ca2+ free concentration decrease. Fluorescence experiments indicated that both ryanodine receptors and Ca2+ -ATPase were distributed in the outer layer of nuclear envelope, and inositol 1,4,5-trisphosphate receptors mainly dispersively localized at inner layer of nuclear envelope. The present study demonstrates that nuclear calcium were regulated by free Ca2+, IP3 and ryanodine. The results suggested calcium transport system might be present in the myocardial nuclei, the myocardial nuclei might served as one of calcium pools in myocardial cell.  相似文献   

20.
Annexin II is a member of the annexin family of Ca(2+)- and phospholipid-binding proteins which is particularly enriched on early endosomal membranes and has been implicated in participating in endocytic events. In contrast to other endosomal annexins the association of annexin II with its target membrane can occur in the absence of Ca(2+) in a manner depending on the unique N-terminal domain of the protein. However, endosome binding of annexin II does not require formation of a protein complex with the intracellular ligand S100A10 (p11) as an annexin II mutant protein (PM AnxII) incapable of interacting with p11 is still present on endosomal membranes. Fusion of the N-terminal sequence of this PM AnxII (residues 1-27) to the conserved protein core of annexin I transfers the capability of Ca(2+)-independent membrane binding to the otherwise Ca(2+)-sensitive annexin I. These results underscore the importance of the N-terminal sequence of annexin II for the Ca(2+)-independent endosome association and argue for a direct interaction of this sequence with an endosomal membrane receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号