首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chloroflexus aurantiacus OK-70 fl was grown photoautotrophically with hydrogen as electron source. The cultures were subjected to long term labelling experments with 13C-labelled acetate or alanine in the presence of sodium fluoroacetate. The presence of fluoroacetate caused the cells to accumulate large amounts of polyglucose which was hydrolysed and analysed by NMR. The labelling patterns of glucose were symmetric and in agreement with carbohydrate synthesis from acetate and CO2 via pyruvate synthase. The content of carbon derived from added acetate was highest in C2 and C5 of glucose, at least 20% higher than in C1 and C6. About one third of the glucose carbon was derived from added acetate, the rest being from CO2. Contrary to expectations, in glucose formed in the presence of C1-labelled acetate C1 and C6 contained more label than C2 and C5, and with C2-labelled acetate as the tracer glucose was mainly labelled in C2 and C5. Labelled CO2 was formed from acetate labelled at either position. The labelling data indicate a new metabolic pathway in C. aurantiacus. It is suggested that the cells form C1-labelled acetyl-CoA from C2-labelled acetyl-CoA and vice versa by a cyclic mechanism involving concomitant CO2 fixation and that this cycle is the part of the autotrophic CO2 fixation pathways in C. aurantiacus in which acetyl-CoA is formed from CO2.The polyglucose of C. aurantiacus appears to have predominantly (1–4)-linked structure with about 10% (1–6)-linkages as revealed by 13C-NMR.  相似文献   

2.
3.
The development of chlorosomes was studied in the green phototrophic bacterium Chloroflexus aurantiacus during the adaptation from chemotrophic (aerobiosis in the dark) to phototrophic (anaerobiosis in the light) conditions. Electron micrographs confirmed that chlorosomes were essentially absent from chemotrophic cells. After 5 h of adaptation, however, about 70% of the cells exhibited the presence of chlorosomes and after 19 h essentially all the cells contained chlorosomes. During the first 5 h of adaptation, the number of chlorosomes per µm2 of membrane area increased from zero to 37 ± 7, and during the following 40 h to 55 ± 17. The latter phase was characterized by an increase in the chlorosome volume from 36 400 to 91 800 nm3. Chemotrophic cells contained all of the three polypeptides assumed to be localized in the chlorosome envelope. As estimated on the basis of bacteriochlorophyll (BChl) c of chlorosomes, the relative contents of all of the three polypeptides decreased during the adaptation to phototrophic conditions by a factor of about eight. It is proposed that largely empty chlorosome bags are already present in chemotrophic cells and that these as well as subsequently formed chlorosomes are filled up with BChl c. The results are discussed in light of the role of the 5.7 kDa polypeptide in the arrangement of BChl c aggregates within the chlorosome.  相似文献   

4.
Amino acid consumption was studied with batch and continuous chemostat cultures of Chloroflexus aurantiacus grown phototrophically in complex medium with casamino acids (Pierson and Castenholz 1974). Amino acids like Arg, Asx, Thr, Ala, Tyr, which were utilized during the early exponential phase by cells grown in batch cultures were consumed in chemostat cultures essentially at any of the dilution rates employed (0.018–0.104 h-1). Those amino acids which were taken up during subsequent phases of growth were consumed in chemostat cultures preferentially at low dilution rates. For example, the consumption of Glx was enhanced during the late exponential phase and at low dilution rates. At high dilution rates Glx was not consumed at all. Since Glx utilization largely paralleled bacteriochlorophyll formation, it is discussed that formation of the photopigment depends on the intracellular availability of Glu as the exclusive precursor for tetrapyrrole synthesis.  相似文献   

5.
Selective solubilization of chlorosome proteins in Chloroflexus aurantiacus   总被引:1,自引:0,他引:1  
Proteins were solubilized selectively from chlorosomes of Chloroflexus aurantiacus by electrophoretic gel filtration according to Griebenow et al. Whereas the 11 kDa and 18 kDa proteins were extracted almost completely, the remaining modified chlorosomes contained high amounts of pigment and c-protein. It was concluded that the c-protein in contradiction to the publication by Griebenow et al. is indeed localized in the interior of Chloroflexus chlorosomes.  相似文献   

6.
The M-subunit primary structure of the reaction centre (RC) from Chloroflexus aurantiacus composed of 306 amino acid residues has been determined by parallel analysis of the protein and corresponding DNA. The blocked N-terminus as well as replacement of the essential histidine liganding Mg of an accessory bacteriochlorophyll in purple bacteria by leucine distinguishes the M-subunit of Chloroflexus RC from that of purple bacteria.  相似文献   

7.
Cytochromes in Chloroflexus aurantiacus grown with and without oxygen   总被引:5,自引:0,他引:5  
Experiments measuring the initial uptake of commercial (3H) tetracycline exhibit two distinct kinetic phases: a rapid phase followed by a slow phase. (3H) tetracycline purified by chromatography on a Dowex 50WX2 column exhibited only monophasic rapid uptake when tested with susceptible Escherichia coli cells. Cyanide inhibited the uptake of purified (3H) tetracycline only partially while transport of proline and maltose was entirely abolished. Energy independent accumulation of tetracycline may be accounted for by binding to cellular constituents. Uptake of tetracycline-as measured by inhibition of -galactosidase synthesis-was strongly affected by a shift in temperature from 37°C to 21°C while carrier-mediated transport systems revealed only minor reductions. Taken together with the non-saturability of tetracycline uptake and the evidence for diffusion of tetracycline through phospholipid bilayers [Argast and Beck (1984) Antimicrob Agents Chemother 26:263–265] these data support the hypothesis that tetracycline enters the cytoplasm by diffusion.Abbreviations CCCP carbonyl cyanide m-chlorophenyl hydrazone - EDTA ethylenediaminetetraacetic acid - IPTG isopropyl--d-thiogalactopyranoside - NB nutrient broth - ONPG O-nitrophenyl--d-galactopyranoside  相似文献   

8.
Freeze-fracture electron microscopy was used to study further the changes in chlorosome structure during the development of the photosynthetic apparatus in Chloroflexus aurantiacus J-10-fl. During development, in response to decreased light intensity or lower oxygen tension, the number of chlorosomes per cell increased. The same conditions also led to a general thickening of chlorosomes but did not affect their length or width. The thickening of the chlorosomes paralleled increases in the bacteriochlorophyll c/bacteriochlorophyll a ratio. Semiaerobic induction of the photosynthetic apparatus did not produce a synchronous assembly of chlorosomes in all cells of a given culture. Even adjacent cells of a single filament showed great variations in the rate and extent of response. Parallel appearance of (i) approximately 5-nm particles (in a lattice configuration) in the membrane attachment site, (ii) the crystalline baseplate material (with a periodicity of approximately 6 nm) adjacent to the membrane attachment site, and (iii) the chlorosome envelope layer preceded addition of longitudinally oriented, rodlike elements (diameter, congruent to 6 m) to the chlorosome core. It is estimated that each chlorosome can funnel energy into approximately 100 reaction centers. Chlorosomes could be isolated by a simple density gradient procedure only from cells grown at low light intensity. A bacteriochlorophyll a species absorbing at 790 nm was associated with isolated chlorosomes. Lithium dodecyl sulfate-polyacrylamide gel electrophoresis of chlorosomes showed only a few low-molecular-weight polypeptides (less than 15,000).  相似文献   

9.
Comparison of Chloroflexus aurantiacus J-10-fl cells by freeze-fracture electron microscopy showed that cell shape and dimensions did not depend on oxygen tension or light intensity during growth. The major morphological difference between cells cultured anaerobically in the light and aerobically in the dark was the absence of chlorosomes in aerobically grown cells. C. aurantiacus cells cultured aerobically in the dark began bacteriochlorophyll synthesis immediately when shifted to either phototrophic or semiaerobic conditions. Cells adapting to phototrophic conditions grew to the same density and synthesized as much bacteriochlorophyll as nonadapting phototrophic cultures grown at the same light intensity. Cells adapting to reduced oxygen tension (semiaerobic conditions) in the dark entered an 8- to 12-h growth lag during which the bacteriochlorophyll content increased significantly. Despite variations in the initial bacteriochlorophyll content and in the length of the growth lag, the amounts of bacteriochlorophyll a and c were constant at the end of the semiaerobic growth lag. At later times during adaptation to semiaerobic conditions, after growth resumed, variations in the ratio of bacteriochlorophyll c/bacteriochlorophyll a were observed and suggested independent regulation of the two bacteriochlorophylls.  相似文献   

10.
Chlorofluexus aurantiacus OK-70 fl was grown photoautotrophically with hydrogen as the electron source. The lowest doubling time observed was 26 h.The mechanism of CO2 fixation in autotrophically grown cells was studied. The presence of ribulose-1,5-bis-phosphate carboxylase and phosphoribulokinase could not be demonstrated. Carbon isotope fractionation (13C) was small, and alanine and aspartate but not 3-phosphoglycerate were the major labelled compounds in short term 14CO2 labelling. Thus CO2 is not fixed by the Calvin cycle.Fluoroacetate (FAc) completely inhibited protein synthesis in cultures and caused a slight citrate accumulation. However, CO2 fixation continued and increased polyglucose formation occurred. Under these conditions added acetate was metabolized to polyglucose, as were glycine, serine, glyoxylate and succinate, but to a lesser extent; little or no formate or CO was utilised.Glyoxylate inhibited CO2 fixation in vivo, indicating that pyruvate is formed from acetyl-CoA and CO2 by pyruvate synthase. Two key enzymes of the reductive TCA cycle, citrate lyase and -ketoglutarate synthase were not detected in cell free extracts, but pyruvate synthase and phosphoenolpyruvate carboxylase were demonstrated. It is concluded that acetyl-CoA is a central intermediate in the CO2 fixation process, but the mechanism of its synthesis is not clear.Abbreviations Rubisco ribulose-1,5-bisphosphate carboxylase - TCA cycle tricarboxylic acid cycle - FAc monofluoroacetate - PEP phosphoenolpyruvate - MV methyl viologen - TTC triphenyltetrazolium chloride - PMS phenazine methosulfate  相似文献   

11.
The activity of two carboxylating enzymes was studied in the green filamentous bacterium Chloroflexus aurantiacus. The carboxylation reaction involving pyruvate synthase was optimized using 14CO2 and cell extracts. Pyruvate synthase was shown to be absent from cells of Cfl. aurantiacus OK-70 and present (in a quantity sufficient to account for autotrophic growth) in cells of Cfl. aurantiacus B-3. Differences in the levels of acetyl CoA carboxylase activity were revealed between cells of the strains studied grown under different conditions. The data obtained confirm the operation of different mechanisms of autotrophic CO2 assimilation in Cfl. aurantiacus B-3 and Cfl. aurantiacus OK-70: in the former organism, it is the reductive cycle of dicarboxylic acids, and in the latter one, it is the 3-hydroxy-propionate cycle.  相似文献   

12.
Two-dimensional crystals of photosynthetic reaction centers from Chloroflexus aurantiacus were obtained from protein-lipid-detergent micelles by detergent dialysis. The size of crystals was up to 2 microns. Some of them were multilayered crystals. However, other crystal forms were also observed. Preliminary image processing analysis showed that crystals of one crystal form referred to two-sided plane group p2 and had the following unit cell parameters: a = 17.6 nm, b = 18.0 nm, gamma = 84 degrees. The contour map of the crystal stain-excluding region was calculated by the Fourier-filtering procedure at about 2 nm resolution.  相似文献   

13.
A bicyclic autotrophic CO2 fixation pathway in Chloroflexus aurantiacus   总被引:3,自引:0,他引:3  
Phototrophic CO(2) assimilation by the primitive, green eubacterium Chloroflexus aurantiacus has been shown earlier to proceed in a cyclic mode via 3-hydroxypropionate, propionyl-CoA, succinyl-CoA, and malyl-CoA. The metabolic cycle could be closed by cleavage of malyl-CoA affording glyoxylate (the primary CO(2) fixation product) with regeneration of acetyl-CoA serving as the starter unit of the cycle. The pathway of glyoxylate assimilation to form gluconeogenic precursors has not been elucidated to date. We could now show that the incubation of cell extract with a mixture of glyoxylate and [1,2,3-(13)C(3)]propionyl-CoA afforded erythro-beta-[1,2,2'-(13)C(3)]methylmalate and [1,2,2'-(13)C(3)]citramalate. Similar experiments using a partially purified protein fraction afforded erythro-beta-[1,2,2'-(13)C(3)]methylmalyl-CoA and [1,2,2'-(13)C(3)]mesaconyl-CoA. Cell extracts of C. aurantiacus were also shown to catalyze the conversion of citramalate into pyruvate and acetyl-CoA in a succinyl-CoA-dependent reaction. The data suggest that glyoxylate obtained by the cleavage of malyl-CoA can be utilized by condensation with propionyl-CoA affording erythro-beta-methylmalyl-CoA, which is converted to acetyl-CoA and pyruvate. This reaction sequence regenerates acetyl-CoA, which serves as the precursor of propionyl-CoA in the 3-hydroxypropionate cycle. Autotrophic CO(2) fixation proceeds by combination of the 3-hydroxypropionate cycle with the methylmalyl-CoA cycle. The net product of that bicyclic autotrophic CO(2) fixation pathway is pyruvate serving as an universal building block for anabolic reactions.  相似文献   

14.
The L-subunit primary structure of the reaction centre from Chloroflexus aurantiacus composed of 310 amino acid residues has been determined by parallel analysis of the protein and corresponding DNA. Significant homology between this protein and L-subunits from reaction centres of purple bacteria is observed. This implies close similarity in the tertiary structure of these proteins.  相似文献   

15.
《FEBS letters》1986,198(1):119-124
The respiratory electron-transport chain of heterotrophically dark-grown Chloroflexus aurantiacus has been investigated. Membranes isolated from these cells have been shown to contain at least three c-type cytochromes (Em, 7.0 255,180, and 10 mV), three b-type cytochromes (Em, 7.0 of 210, 60 and −65 mV) and two cytochromes of the a type with Em, 7.0 of 330 and 190 mV. Spectroscopic evidence from CO-difference spectra, CN-duference spectra and spectra at fixed oxidation-reduction potentials suggests that the two a-type components may be analogous to cytochromes a and a3 of mitochondria. The analyses of the effects induced by CN, myxothiazol and antimycin A on both steady-state respiratory activities and semi-rapid oxidation-reduction kinetic patterns of c- and a-type cytochromes indicate the presence of a branched respiratory chain. Growth of Chloroflexus in medium lacking added copper diminished the concentration of the a-type cytochromes but not those of cytochromes of the b and c type.  相似文献   

16.
A sequence-specific endonuclease CauB3I has been isolated from cell extracts of Chloroflexus aurantiacus and partially purified by chromatography on heparin-sepharose; the yield was 3000 units per 1 g of cells. The final preparation is free of non-specific nucleases. It is shown that endonuclease CauB3I recognizes 5' T decreases CCGGA 3' sequence in double-stranded DNA and cleaves it as shown by an arrow. Methylation of adenine in the recognition sequence makes it resistant to CauB3I.  相似文献   

17.
Chloroflexus, a newly described genus of filamentous, photosynthetic, gliding bacteria, oxidizes sulfide anaerobically under photoautotrophic or photoheterotrophic growh conditions and deposits elemental sulfur outside the cell. The formation of sulfur granules outside the cell supports the idea that this organism is related to the green sulfur bacteria (Chlorobiaceae).  相似文献   

18.
Chloroflexus aurantiacus grown in batch culture took up exogenous alcohols and incorporated these into bacteriochlorophyll c as the esterifying alcohol. It was possible to change the distribution of the naturally occurring homologs of bacteriochlorophyll c esterified with phytol, hexadecanol, and octadecanol by adding the appropriate alcohol. The corresponding homolog then made up at least 60% of the cellular bacteriochlorophyll c. It was also possible to obtain novel bacteriochlorophyll homologs not found in detectable amounts in control cells by adding fatty alcohols with short chains (C10, C12) or long chains (C20). These changes in bacteriochlorophyll composition had no detectable effects on the spectral properties of the chlorosomes.Abbreviation BChl Bacteriochlorophyll  相似文献   

19.
《BBA》1987,891(3):216-226
The membrane-bound electron-transfer chain components of both phototrophically and chemotrophically grown Chloroflexus aurantiacus have been characterized. Membranes isolated from chemotrophically grown Chloroflexus have been shown to contain at least three c-type cytochromes and at least three b-type cytochromes. In addition, these cells appear to lack a photochemical reaction center and the high potential (Em = +260 mV) cytochrome c-554 that serves as the immediate donor to the reaction center in phototrophically grown Chloroflexus. Phototrophically grown cells contain a CO-binding c-type cytochrome, apparently absent in the chemotrophically grown cells. However, a different CO-binding component, which may function as the terminal oxidase, is present in chemotrophically grown cells.  相似文献   

20.
The complete nucleotide sequence of two Chloroflexus aurantiacus reaction-center genes has been obtained. The amino acid sequence deduced from the first gene showed 40% similarity to the L subunit of the Rhodobacter sphaeroides reaction center. This L subunit was 310 amino acids long and had an approximate molecular mass of 35 kDa. The second gene began 17 bases downstream from the first gene. The amino acid sequence deduced from it (307 amino acids; 34950 Da) was 42% similar to the M subunit of the Rhodobacter sphaeroides reaction center. 20% of the deduced primary structure were confirmed through automated Edman degradation of cyanogen bromide peptide fragments or N-chlorosuccinimide peptide fragments isolated from the purified reaction-center complex or from the individual subunits. The peptides were isolated by preparative gel electrophoresis combined with molecular sieve chromatography in the presence of a mixture of formic acid, acetonitrile, 2-propanol and water. This method appeared to be applicable to the isolation of other hydrophobic proteins and their peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号