首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A -carotene oxygenase is described which occurs in the Cyanobacterium Microcystis. It cleaves -carotene and zeaxanthin specifically at the positions 7,8 and 7,8, while echinenone and myxoxanthophyll are not affected. The oxidative cleavage of -carotene leads to the formation of -cyclocitral and crocetindial and that of zeaxanthin to hydroxy--cyclocitral and crocetindial in nearly stoichiometric amounts. Oxidant is dioxygen as has been demonstrated by high incroporation (86%) of 18O2 into -cyclocitral. -Carotene oxygenase is membrane bound, sensitive to sulfhydryl reagents, antioxidants and chelating agents. Iron seems to be an essential part of the enzyme activity. Cofactors necessary for the reaction could not be detected.Abbreviations TLC thin layer-chromatography - PIPES piperazine-N,N-bis-(2-ethanesulfonate) Na - TES 2{[tris-(hydroxymethyl)-methyl]-amino} ethanesulfonic acid Dedicated to Professor G. Drews on occasion of his 60th birthday  相似文献   

2.
Chorionic gonadotropin (CG) is a placental derived hormone that plays a crucial role in successful implantation and establishment of early pregnancy in the primates. The rhesus monkey was chosen as a model to understand the feasibility of developing human DNA immuno-contraceptive. The coding region of rhesus monkey CG -subunit (rmCG) was isolated by the TDRT-PCR method. The nucleotide sequence including the leader peptide was 499 nucleotide long and encoded 166 amino acids. In comparing with the previous known primates CG -subunits, the rmCG was the highest degree of homology with baboon CG -subunit at the deduced amino acid sequence (94%), 79.5% homology with human CG -subunit and 70.4% homology with marmoset monkey CG -subunit. The eukaryotic expression vector pCMV4-rmCG inserted full-coding cDNA sequence of rmCG was constructed, and the expression of rmCG -subunit in HeLa cells transient expressing system in vitro and BALB/c mice in vivo was determined. The results demonstrated that the recombinant PCMV4-rmCG eukaryotic expression vector could express rmCG -subunit in vitro and in vivo.  相似文献   

3.
DNA polymorphisms in the 1--globin gene region in nine Asian macaques(Macaca fuscata, M. mulatta, M. nemestrina, M. cyclopis, M. fascicularis, M. arctoides, M. radiata, M. maura, andM. assamensis) were examined using several restriction endonucleases and the human 1, IVS2, and IVS2 probes. TheBamHI site 3 to the -globin gene was polymorphic inM. fuscata andM. mulatta, while the HincII site and the EcoRI site in the 1-globin gene region was highly polymorphic inM. fuscata andM. mulatta, respectively. These polymorphic sites also seem to be present in other Asian macaques. The present study of the polymorphism at theBamHI site 3 to the -globin gene in Asian macaques supports, at the nuclear DNA level, the idea that thefascicularis group includingM. fuscata, M. mulatta, M. cyclopis, andM. fascicularis is different from other Asian macaque groups.This study was supported in part by the Cooperation Research Program of the Primate Research Institute, Kyoto University.  相似文献   

4.
Transmannosylation from mannotriose (Man1-4Man1-4Man) to the 4-position at the nonreducing end N-acetylglucosaminyl residue ofN,N-diacetylchitobiose was regioselectively induced through the use of -d-mannanase fromAspergillus niger. The enzyme formed the trisaccharide Man1-4GlcNAc1-4GlcNAc (3.7% of the enzyme-catalysed net decrease ofN,N-diacetylchitobiose) from mannotriose as a donor andN,N-diacetylchitobiose as an acceptor. Mannobiose (Man1-4Man) was also shown to be useful as a donor substrate for the desired trisaccharide synthesis.Abbreviations Man d-mannose - (M n) (n=1–5) -linkedn-mer of mannose - GlcNAc2 2-acetamido-2-deoxy--d-glucopyranosyl-(1–4)-2-acetamido-2-deoxy-d-glucose  相似文献   

5.
A mixed enzyme system, with -fructofuranosidase (obtained from Aspergillus japonicus) and commercial glucose oxidase (Gluzyme, Novo Nordisk), produced fructooligosaccharides (FOS) in high yield from sucrose. The reaction was performed in an aerated stirred tank reactor controlled at pH 5.5 by a slurry of CaCO3. Glucose, an inhibitor of -fructofuranosidase, produced in the reaction was converted by glucose oxidase to gluconic acid, which was then precipitated to calcium gluconate in solution. The system produced more than 90% (w/w) FOS on a dry weight basis, the remainder was glucose, sucrose and a small amount of calcium gluconate. Most of the FOS and sucrose was hydrolyzed to fructose in the mixed enzyme system with glucose oxidase and -fructofuranosidase from Asp. niger.  相似文献   

6.
This study reports a novel splice variant form of the voltage-dependent calcium channel 2 subunit (2g). This variant is composed of the conserved amino-terminal sequences of the 2a subunit, but lacks the -subunit interaction domain (BID), which is thought essential for interactions with the 1 subunit. Gene structure analysis revealed that this gene was composed of 13 translated exons spread over 107 kb of the genome. The gene structure of the 2 subunit was similar in exon-intron organization to the murine 3 and human 4 subunits. Electrophysiological evaluation revealed that 2a and 2g affected channel properties in different ways. The 2a subunit increased the peak amplitude, but failed to increase channel inactivation, while 2g had no significant effects on either the peak current amplitude or channel inactivation. Other subunits, such as 3 and 4, significantly increased the peak current and accelerated current inactivation.  相似文献   

7.
Summary Transforming growth factor- (TGF-) is a biologically active polypeptide present in normal tissues as well as transformed cells. Two structurally related forms of this peptide are TGF- 1 and TGF- 2. Using freshly isolated cardiomyocytes and non-myocyte heart cells, and a [32P]-labelled cDNA probe to human TGF- 1, we demonstrated that mRNA for TGF- 1 could be detected only in the nonmyocyte fraction of heart cells. In the present study, the distribution of TGF- 1 in the heart was determined by immunofluorescence staining by use of a polyclonal antibody to porcine TGF- 1 in cryostat sections of rat heart. Immunofluorescence staining was intense around the blood vessels and radially diffuse in the surrounding myocardium.  相似文献   

8.
A fermented milk, Kefir, contains an active substance which enhances IFN- secretion of a human osteosarcoma line MG-63 treated with a chemical inducer, poly I: poly C. The active substance in the fermented milk was identified to be sphingomyelin (SpM) by a combined use of a fast atom bombardment mass spectrometry (FAB-MS) and a fast atom bombardment tandem mass spectrometry (FAB-MS/MS). SpM from fermented milk (F-SpM) was a mixture of four molecular species of SpMs having C21-, C22-, C23- and C24-fatty acids. F-SpM enhanced the IFN secretion 14 times, SpMs from other sources also enhanced moderately (2–3 times). Sphingosine and lysosphingomyelin also enhanced the activity but ceramide and cerebroside did not.Abbreviations IFN- interferon- - SpM sphingomyelin - Lyso-SpM lysosphingomyelin - SpS sphingosine - FAB-MS fast atom bombardment mass spectrometry - FAB-MS/MS fast atom bombardment tandem mass spectrometry  相似文献   

9.
The gene encoding -mannanase was cloned from alkalophilic Bacillus sp. AM-001 into Escherichia coli JM 101 by inserting HindIII-generated DNA fragments into the HindIII site of pUC19. A 2.0 kb XbaI-PstI fragment of the donor strain DNA was sufficient for -mannanase synthesis. The amount of -mannanase expressed in E. coli JM101 harboring pMAH3 (containing a 2.4 kb XbaI-HindIII fragment) was about 24% of the activity produced by the donor strain. E. coli JM101 harboring pMAH3 was found to produce two enzymatically active -mannanases (A and B). These two -mannanases were purified to electrophoretically homogenous states. The -mannanase A had enzymatic properties similar to those of the -mannanases M-I and M-II produced by alkalophilic Bacillus sp. AM-001, and the -mannanase B resembled its -mannanase M-III. In contrast to -mannanase production in the donor strain, that in E. coli was not inducible. The NH2-terminal amino acid sequences from amino acid 1 (Asn) to 9 (Gln) of the three -mannanases purified from alkalophilic Bacillus sp. AM-001 coincide with those from amino acid 4 (Asn) to 12 (Gln) of the two -mannanases purified from E. coli transformant.  相似文献   

10.
Summary The peroxidase-antiperoxidase immunocytochemical technique was used to identify the ACTH/endorphin cells in the porcine pituitary at the ultrastructural level and to determine the precise subcellular localization of the pro-ACTH/endorphin fragments. The cells display different aspects: 1) large, regular shapes with numerous and large secretory granules; 2) small, irregular and angular shapes with small granules aligned along the periphery of the cell; and 3) intermediate forms. The presence of and -endorphin not only in the same cells but also in the same secretory granules that contain ACTH and -LPH clearly indicates that both the precursor or its fragments and the abovementioned peptides are stored in the same granules and released simultaneously by the corticotropic cells. The presence of FSH in some corticotropic cells is also discussed.Abbreviations used in this Article ACTH corticotropin - -MSH -melanotropin (ACTH I–I3) - CLIP corticotropin-like intermediate lobe peptide (ACTH 18–39) - -LPH -lipotropin - -MSH -melanotropin (-LPH 41–58); -endorphin (-LPH 61–91); -endorphin (-LPH 61–76)  相似文献   

11.
Moss and lichen samples from the region of the Bulgarian base on Livingston Island, Antarctica were examined for the presence of yeasts. Six pure cultures were obtained. They were screened for -glucosidase production and two of them were selected. These were identified as Cryptococcus albidus AL2 and C. albidus AL3, according to their morphology, reproductive behaviour, and growth at different temperatures, salt concentrations, nutritional characteristics and various biochemical tests. These strains were examined for biosynthesis of -glucosidase on different carbon sources under aerobic conditions. High exocellular and endocellular activities were obtained when they were grown on cellobiose, methyl--D-glucopyranoside and salicin. The time course of growth and -glucosidase production of the yeast was examined by cultivation in a medium with cellobiose under aerobic conditions at temperatures 18 and 24 °C for 96 h. Cryptococcus albidus AL2 and C. albidus AL3 synthesized exocellular enzyme, respectively 58.33 and 55.83 U/ml and endocellular enzyme 137.75 and 205.34 U/ml at 24 °C for 72 h of the cultivation.  相似文献   

12.
By sequencing the central region of the cucumopine-type T-DNA of Agrobacterium rhizogenes strain 2659, we identified three open reading frames homologous, to different extents, to ORFs 10, 11 and 12 (rolA, B and C) of the agropine-type (1855) T-DNA. Recombinant Agrobacterium strains encompassing the ORFs of 2659 T-DNA-which we refer to as rol, and -were utilized to infect carrot discs and to obtain transgenic tobacco plants, in order to compare the morphogenetic capabilities to those of the 1855 rol genes. Moreover, a long segment of the 5 non-coding region of rol and rol was fused to the GUS reporter gene and the pattern of expression and the responsiveness to auxin of the constructs was analysed in transgenic tobacco. Differences in the auxin requirement for root induction between the 2659 rol genes and their respective 1855 counterparts were pinpointed. These differences are not due to gene regulation and presumably reflect functional differences in the proteins encoded. Differences were also observed in the pattern of expression of rol in roots of transgenic plants, as compared to rolB. In addition, the pattern of expression of rol-GUS construct in roots was found to be analogous to that observed for a construct driven by two of the five regulatory domains of the rolB promoter.  相似文献   

13.
    
Summary During the growth of Kluyveromyces marxianus var. marxianus ATCC 10022 on lactose, peaks of glucose, but not -galactosidase activity, were detected iroculture medium. Harvested and washed whole cells produced glucose and galactose from lactose, or ortho-nitro-phenol from the chromogenic substrate ortho-nitro-phenyl--D-galactopyranoside (ONPG), indicating that -galactosidase is physically associated with cells. ONPG hydrolysis by whole cells presented a monophasic kinetics (Km 36.6 mM) in lactose exponential growth phase cells, but a biphasic kinetics (Km 0.2 and 36.6 mM) in stationary growth phase cells. Permeabilization with digitonin or disruption of cells from both growth phases led to monosite ONPG hydrolysis (Km 2.2 to 2.5 mM), indicating that =galactosidase is not located in the periplasm. In addition, the energy inhibitors fluoride or arsenate, as well as the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) prevented ONPG hydrolysis by whole cells. These findings indicate that energy coupled transmembrane transport is the rate-limiting step for intracellular ONPG cleavage. The taxonomic and physiologic implications of the exclusive intracellular location of -galactosidase of K. marxianus var. marxianus ATCC 10022 are discussed.  相似文献   

14.
Two extracellular -glucosidases (cellobiase, EC 3.2.1.21), I and II, from Aspergillus nidulans USDB 1183 were purified to homogeneity with molecular weights of 240,000 and 78,000, respectively. Both hydrolysed laminaribiose, -gentiobiose, cellobiose, p-nitrophenyl--L-glucoside, phenyl--L-glucoside, o-nitrophenyl--L-glucoside, salicin and methyl--L-glucoside but not -linked disaccharides. Both were competitively inhibited by glucose and non-competitively (mixed) inhibited by glucono-1,5-lactone. -Glucosidase I was more susceptible to inhibition by Ag+ and less inhibited by Fe2+ and Fe3+ than -glucosidase II.  相似文献   

15.
Summary 1. Alzheimer's disease is characterized by the deposition in the brain of extracellular amyloid plaques and vascular deposits consisting mostly of amyloid-peptide (A). A, a polypeptide of 39–43 amino acids (M r, 4 kDa), is derived proteolytically from a family of proteins of 695–770 amino acids (M r, 110–140 kDa) called-amyloid precursor protein (APP).2.APP, an integral membrane glycoprotein, is extensively posttranslationally modified within the endoplasmic reticulum (ER) and various Golgi compartments.APP is cleaved by proteases in either the trans-Golgi network or the post-Golgi apparatus and then secreted as a truncated soluble form into the conditioned media of cultured cells and cerebrospinal fluid samples from human subjects.APP can be processed either by an antiamyloidogenic secretory pathway or by an endosomal/lysosomal pathway.3. I studied the effect of two ionophores on the processing ofAPP in cultured cells. Monensin and, in some cases, ammonium chloride increase the intracellular accumulation ofAPP in several cell lines and may alter its processing. Monensin, which had the most consistent effects, also inhibited secretion ofAPP in a differentiated (growth factor mediated) cell line. Nigericin, with greater K+ selectivity, was less able to alter the accumulation and possible processing of the protein.4. These results suggest that the increase in the accumulation of intracellularAPP observed after treating cells with ionophores has some specificity. The selective effect of these ionophores on the metabolism ofAPP may provide a model system to analyze the pathways for studying maturation, secretion, and degradation ofAPP.  相似文献   

16.
Cellulose synthase genes (CesAs) encode a broad range of processive glycosyltransferases that synthesize (14)-D-glycosyl units. The proteins predicted to be encoded by these genes contain up to eight membrane-spanning domains and four `U-motifs' with conserved aspartate residues and a QxxRW motif that are essential for substrate binding and catalysis. In higher plants, the domain structure includes two plant-specific regions, one that is relatively conserved and a second, so-called `hypervariable region' (HVR). Analysis of the phylogenetic relationships among members of the CesA multi-gene families from two grass species,Oryza sativa and Zea mays, with Arabidopsis thaliana and other dicotyledonous species reveals that the CesA genes cluster into several distinct sub-classes. Whereas some sub-classes are populated by CesAs from all species, two sub-classes are populated solely by CesAs from grass species. The sub-class identity is primarily defined by the HVR, and the sequence in this region does not vary substantially among members of the same sub-class. Hence, we suggest that the region is more aptly termed a `class-specific region' (CSR). Several motifs containing cysteine, basic, acidic and aromatic residues indicate that the CSR may function in substrate binding specificity and catalysis. Similar motifs are conserved in bacterial cellulose synthases, the Dictyostelium discoideum cellulose synthase, and other processive glycosyltransferases involved in the synthesis of non-cellulosic polymers with (14)-linked backbones, including chitin, heparan, and hyaluronan. These analyses re-open the question whether all the CesA genes encode cellulose synthases or whether some of the sub-class members may encode other non-cellulosic (14)-glycan synthases in plants. For example, the mixed-linkage (13)(14)-D-glucan synthase is found specifically in grasses and possesses many features more similar to those of cellulose synthase than to those of other -linked cross-linking glycans. In this respect, the enzymatic properties of the mixed-linkage -glucan synthases not only provide special insight into the mechanisms of (14)-glycan synthesis but may also uncover the genes that encode the synthases themselves.  相似文献   

17.
Endothelin-1 (ET-1) has been found to increase cardiac -myosin heavy chain (-MyHC) gene expression and induce hypertrophy in cardiomyocytes. ET-1 has been demonstrated to increase intracellular reactive oxygen species (ROS) in cardiomyocytes. The exact molecular mechanism by which ROS regulate ET-1-induced -MyHC gene expression and hypertrophy in cardiomyocytes, however, has not yet been fully described. We aim to elucidate the molecular regulatory mechanism of ROS on ET-1-induced -MyHC gene expression and hypertrophic signaling in neonatal rat cardiomyocytes. Following stimulation with ET-1, cultured neonatal rat cardiomyocytes were examined for 3H-leucine incorporation and -MyHC promoter activities. The effects of antioxidant pretreatment on ET-1-induced cardiac hypertrophy and mitogen-activated protein kinase (MAPKs) phosphorylation were studied to elucidate the redox-sensitive pathway in cardiomyocyte hypertrophy and -MyHC gene expression. ET-1 increased 3H-leucine incorporation and -MyHC promoter activities, which were blocked by the specific ETA receptor antagonist BQ-485. Antioxidants significantly reduced ET-1-induced 3H-leucine incorporation, -MyHC gene promoter activities and MAPK (extracellular signal-regulated kinase, p38, and c-Jun NH2 -terminal kinase) phosphorylation. Both PD98059 and SB203580 inhibited ET-1-increased 3H-leucine incorporation and -MyHC promoter activities. Co-transfection of the dominant negative mutant of Ras, Raf, and MEK1 decreased the ET-1-induced -MyHC promoter activities, suggesting that the Ras-Raf-MAPK pathway is required for ET-1 action. Truncation analysis of the -MyHC gene promoter showed that the activator protein-2 (AP-2)/specificity protein-1 (SP-1) binding site(s) were(was) important cis-element(s) in ET-1-induced -MyHC gene expression. Moreover, ET-1-induced AP-2 and SP-1 binding activities were also inhibited by antioxidant. These data demonstrate the involvement of ROS in ET-1-induced hypertrophic responses and -MyHC expression. ROS mediate ET-1-induced activation of MAPK pathways, which culminates in hypertrophic responses and -MyHC expression. Tzu-Hurng Cheng, Neng-Lang Shih: These authors have equally contributed to this work  相似文献   

18.
In modern malting barley breeding it is important to increase the level of -amylase activity level in barley. The aim of this study was to investigate if a PCR method for screening -amy1 alleles can be used as an indicator for -amylase activity level in barley. Activity was assayed from 24 cultivars, 7 lines, and a Hordeum spontaneum PI 296897 strain grown in the same field. The -amy1 alleles were identified by amplifying the intron III-specific region of the gene using PCR. No new alleles were detected in addition to the three alleles found earlier: cv Adorra-like, cv Haruna Nijo-like and PI 296897-like -amy1 allele. Samples were grouped according to the nature of their -amy1 locus and enzyme activities were compared between the groups. Cultivars carrying a cv Haruna Nijo-like -amy1 allele had 1.3 times and lines carrying a PI 296897-like -amy1 allele had 2.1 times higher -amylase activity than cultivars carrying a cv Adorra-like -amy1 allele. The mean activities are significantly different in the allele groups (Kruskal–Wallis: for protein H= 11.54, P< 0.01; for meal H= 12.74, P< 0.01). PCR fragments can be used as allele specific markers to predict the level of -amylase activity in breeding when such variation of the intron III is concerned.  相似文献   

19.
Part of a -amylase genomic DNA sequence from the oomycete, Achlya bisexualis was cloned by polymerase chain reaction (PCR) using degenerate oligonucleotide primers derived from the conserved regions of other known -amylase sequences. The 5- and 3-regions of the -amylase gene were amplified by genome walking method. The Ach. bisexualis -amylase gene consisted of a 1338bp open reading frame, encoding a protein of 446 amino acids with a molecular weight of 49 381Da, and was not interrupted by any intron. The deduced amino acid sequence of the -amylase gene had 67% similarity to the -amylase of Saprolegnia ferax, followed by 40% similarity to that ofArabidopsis thaliana. The -amylase gene was expressed in Saccharomyces cerevisiae placing it under the control of the alcohol dehydrogenase gene (ADC1) promoter.  相似文献   

20.
Flavobacterium multivorum, a non-fermenting Gram-negative bacteria, normally produces zeaxanthin (3R, 3 R-, -carotene-3, 3 diol) as its main carotenoid. The effect of supplementation of various inorganic salts and urea on the growth, total carotenoid production, and proportion of -carotene (, -carotene), -cryptoxanthin (, -caroten-3-ol), and zeaxanthin produced by F. multivorum was investigated. Urea and several salts, such as calcium chloride, ammonium chloride, lithium chloride, and sodium carbonate, improved total carotenoid production by 1.5- to 2.0-fold. Urea and sodium carbonate had an unexpectedly strong positive effect on -carotene production at the expense of zeaxanthin formation. The effect was found to be independent of incubation time, and -carotene represented 70% (w/w) of the total carotenoid content. The cumulative effect of urea and sodium carbonate was further studied using response surface methodology. An optimum medium was found to contain 4,000 and 4,070 mg l–1 urea and sodium carbonate, respectively. The maximum -carotene level was 7.85 g ml–1 culture broth, which represented 80% (w/w) of the total carotenoid produced. Optimization resulted in 77- and 88-fold improvements in the volumetric and specific -carotene levels, respectively, accompanied by a simultaneous decrease in the zeaxanthin level as compared to the control medium. The carotenoid production profile in the optimized medium indicated that -carotene was produced maximally during the late exponential phase at 0.41 g ml–1 h–1. It is possible that this organism could be an excellent commercial source of either -carotene or zeaxanthin, depending on initial culture conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号