首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a lack of research into bioreactor engineering and fermentation protocol design in the field of marine bacterial antibiotic production. Most production strategies are carried out at the shake-flask level and lack a mechanistic understanding of the antibiotic production process, offering poor prospects for successful scale-up. This review shows that data need to be collated on media and physical optima differences between the trophophase and idiophase, along with investigations into the control mechanisms for biosynthesis, to allow implementation of novel fermentation protocols. Immobilization may play a part in bioprocess intensification of marine bacterial antibiotic production, through again this area is understudied. Similarly, mass transfer and shear stress data of fermentations are needed to provide the bioreactor design requirements to intensify antibiotic biosynthesis, with process scale-up in mind. The application of bioprocess intensification methods to the production of antibiotics (and other metabolites) from marine microbes will become an important strategy for improving supply of natural products, in order to assess their suitability as chemotherapeutic drugs. Received March 11, 1999; accepted May 4, 1999.  相似文献   

2.
Access to real-time process information is desirable for consistent and efficient operation of bioprocesses. Near-infrared spectroscopy (NIRS) is known to have potential for providing real-time information on the quantitative levels of important bioprocess variables. However, given the fact that a typical NIR spectrum encompasses information regarding almost all the constituents of the sample matrix, there are few case studies that have investigated the spectral details for applications in bioprocess quality assessment or qualitative bioprocess monitoring. Such information would be invaluable in providing operator-level assistance on the progress of a bioprocess in industrial-scale productions. We investigated this aspect and report the results of our investigation. Near-infrared spectral information derived from scanning unprocessed culture fluid (broth) samples from a complex antibiotic production process was assessed for a data set that incorporated bioprocess variations. Principal component analysis was applied to the spectral data and the loadings and scores of the principal components studied. Changes in the spectral information that corresponded to variations in the bioprocess could be deciphered. Despite the complexity of the matrix, near-infrared spectra of the culture broth are shown to have valuable information that can be deconvoluted with the help of factor analysis techniques such as principal component analysis (PCA). Although complex to interpret, the loadings and score plots are shown to offer potential in process diagnosis that could be of value in the rapid assessment of process quality, and in data assessment prior to quantitative model development.  相似文献   

3.
Although several compelling benefits for bioprocess intensification have been reported, the need for a streamlined integration of perfusion cultures with capture chromatography still remains unmet. Here, a robust solution is established by conducting tangential flow filtration-based perfusion with a wide-surface pore microfiltration membrane. The resulting integrated continuous bioprocess demonstrated negligible retention of antibody, DNA, and host cell proteins in the bioreactor with average sieving coefficients of 98 ± 1%, 124 ± 28%, and 109 ± 27%, respectively. Further discussion regarding the potential membrane fouling mechanisms is also provided by comparing two membranes with different surface pore structures and the same hollow fiber length, total membrane area, and chemistry. A cake-growth profile is reported for the narrower surface pore, 0.65-µm nominal retention perfusion membrane with final antibody sieving coefficients ≤70%. Whereas the sieving coefficient remained ≥85% during 40 culture days for the wide-surface pore, 0.2-µm nominal retention rating membrane. The wide-surface pore structure, confirmed by scanning electron microscopy imaging, minimizes the formation of biomass deposits on the membrane surface and drastically improves product sieving. This study not only offers a robust alternative for integrated continuous bioprocess by eliminating additional filtration steps while overcoming sieving decay, but also provides insight into membranes' fouling mechanism.  相似文献   

4.
Bioprocess engineering: now and beyond 2000   总被引:1,自引:0,他引:1  
Abstract: Bioprocess engineering may be defined as the translation of life-science discoveries into practical products, processes, or systems capable of serving the needs of society. It is a critical link from discovery to commercialization. Current bioprocess engineering is primarily focused on biopharmaceutical products of high dollar value per gram such as erythropoietin or growth hormones. However, other products of current interest include ethanol, amino acids, organic acids, antibiotics, and specialty chemicals. Current challenges for increased use of bioprocesses for producing bulk and semi-bulk chemicals include both technical and infrastructural barriers. Technical barriers are easy to identify and at times can be overcome by engineering improvements or changes brought about radical developments in science (e.g. recombinant DNA). Infrastructural barriers, such as raw-material substitutions or educational limitations are more difficult to define and change. Recently the National Academy of Sciences examined barriers to bioprocess engineering and issued a report entitled: "Putting Biotechnology to Work: Bioprocess Engineering". A key recommendation was the establishment of a coordinated long-range plan of research, development, training and education in bioprocess engineering involving participation by industry, academe and the federal government. The report was the first national analysis devoted entirely to bioprocess engineering and covered new topics such as space bioprocess engineering. Other topics covered by the author include the current state of the US chemical industry and future directions in three promising areas of bioprocess engineering environmental bioprocess engineering, marine bioprocess engineering and microsystem bioprocess engineering.  相似文献   

5.
Marine micro-organisms have been playing highly diverse roles over evolutionary time: they have defined the chemistry of the oceans and atmosphere. During the last decades, the bioreactors with novel designs have become an important tool to study marine microbiology and ecology in terms of: marine microorganism cultivation and deep-sea bioprocess characterization; unique bio-chemical product formation and intensification; marine waste treatment and clean energy generation. In this review we briefly summarize the current status of the bioreactor technology applied in marine microbiology and the critical parameters to take into account during the reactor design. Furthermore, when we look at the growing population, as well as, the pollution in the coastal areas of the world, it is urgent to find sustainable practices that beneficially stimulate both the economy and the natural environment. Here we outlook a few possibilities where innovative bioreactor technology can be applied to enhance energy generation and food production without harming the local marine ecosystem.  相似文献   

6.
One of the major aims of bioprocess engineering is the real-time monitoring of important process variables. This is the basis of precise process control and is essential for high productivity as well as the exact documentation of the overall production process. Infrared spectroscopy is a powerful analytical technique to analyze a wide variety of organic compounds. Thus, infrared sensors are ideal instruments for bioprocess monitoring. The sensors are non-invasive, have no time delay due to sensor response times, and have no influence on the bioprocess itself. No sampling is necessary, and several components can be analyzed simultaneously. In general, the direct monitoring of substrates, products, metabolites, as well as the biomass itself is possible. In this review article, insights are provided into the different applications of infrared spectroscopy for bioprocess monitoring and the complex data interpretation. Different analytical techniques are presented as well as example applications in different areas.  相似文献   

7.
Recent environmental economic developments generate a need for sustainable and cost‐effective (microbial) processes for the production of high‐volume, low‐priced bulk chemicals. As an example, n‐butanol has, as a second‐generation biofuel, beneficial characteristics compared to ethanol in liquid transportation fuel applications. The industrial revival of the classic n‐butanol (ABE) fermentation requires process and strain engineering solutions for overcoming the main process limitations: product toxicity and low space–time yield. Reaction intensification on the biocatalyst, fermentation, and bioprocess level can be based on economic and ecologic evaluations using quantifiable constraints. This review describes the means of process intensification for biotechnological processes. A quantitative approach is then used for the comparison of the massive literature on n‐butanol fermentation. A comprehensive literature study—including key fermentation performance parameters—is presented and the results are visualized using the window of operation methodology. The comparison allowed the identification of the key constraints, high cell densities, high strain stability, high specific production rate, cheap in situ product removal, high n‐butanol tolerance, to operate in situ product removal efficiently, and cheap carbon source. It can thus be used as a guideline for the bioengineer during the combined biocatalyst, fermentation, and bioprocess development and intensification.  相似文献   

8.
Several barophilic and barotolerant bacteria were isolated from deep-sea mud samples of Suruga Bay (2485 m depth), the Ryukyu Trench (5110 m depth), and the Japan Trench (land-side 6356 m, and sea-side 6269 m depth, respectivelys. The barophilic bacteria, strains DB5501, DB6101, DB6705 and DB6906, were albe to grow better under high hydrostatic pressures than under atmospheric pressure (0.1 megapascals; MPa). The optimal growth pressures for the barophilic bacteria were approximately 50 MPa at 10°C. The barotolerant strains DSK1 and DSS12 were determined to be psychrophilic, and had optimal growth temperatures of 10°C and 8°C, respectively. The degree of barophily and barotolerance was shown to be very dependent on temperature. For example, at 4°C the barophilic strains were indistinguishable from barotolerant bacteria, whereas at 15°C the barotolerant strains behaved more like the barophilic strains. Based on sequence analysis of 16S ribosomal DNA, all of the strains included in this study belong to the gamma subgroup of the Proteobacteria. Phylogenetic relations between the isolated strains and the known gamma subgroup bacteria suggested that the isolated strains belong to a new sub-branch of this group.  相似文献   

9.
Marine bioprocess engineers face a unique challenge for the millennium: designing methods for the sustainable development of known marine resources, as well as inventing a new generation of tools and processes that will enable a greater understanding of the ocean and its resources and lead to the discovery of new bioproducts for the future. The identification and application of novel, marine-derived pharmaceuticals, cosmetics, nutritional supplements, enzymes, and pigments have already been realized. The current and potential market value of these marine bioproducts is substantial. Continued discovery and development of marine resources will depend on a number of factors: identification of new bioproducts, sustainable use of the product, optimization of production, and efficient product recovery. Successfully addressing these challenges will require the integration and collaboration of mutidisciplinary teams of oceanographers, biologists, chemists, and engineers.  相似文献   

10.
Most current research on land‐use intensification addresses its potential to either threaten biodiversity or to boost agricultural production. However, little is known about the simultaneous effects of intensification on biodiversity and yield. To determine the responses of species richness and yield to conventional intensification, we conducted a global meta‐analysis synthesizing 115 studies which collected data for both variables at the same locations. We extracted 449 cases that cover a variety of areas used for agricultural (crops, fodder) and silvicultural (wood) production. We found that, across all production systems and species groups, conventional intensification is successful in increasing yield (grand mean + 20.3%), but it also results in a loss of species richness (?8.9%). However, analysis of sub‐groups revealed inconsistent results. For example, small intensification steps within low intensity systems did not affect yield or species richness. Within high‐intensity systems species losses were non‐significant but yield gains were substantial (+15.2%). Conventional intensification within medium intensity systems revealed the highest yield increase (+84.9%) and showed the largest loss in species richness (?22.9%). Production systems differed in their magnitude of richness response, with insignificant changes in silvicultural systems and substantial losses in crop systems (?21.2%). In addition, this meta‐analysis identifies a lack of studies that collect robust biodiversity (i.e. beyond species richness) and yield data at the same sites and that provide quantitative information on land‐use intensity. Our findings suggest that, in many cases, conventional land‐use intensification drives a trade‐off between species richness and production. However, species richness losses were often not significantly different from zero, suggesting even conventional intensification can result in yield increases without coming at the expense of biodiversity loss. These results should guide future research to close existing research gaps and to understand the circumstances required to achieve such win‐win or win‐no‐harm situations in conventional agriculture.  相似文献   

11.
We have previously reported the development of a 100% genetically defined engineered Escherichia coli strain capable of producing L ‐valine from glucose with a high yield of 0.38 g L ‐valine per gram glucose (0.58 mol L ‐valine per mol glucose) by batch culture. Here we report a systems biological strategy of employing flux response analysis in bioprocess development using L ‐valine production by fed‐batch culture as an example. Through the systems‐level analysis, the source of ATP was found to be important for efficient L ‐valine production. There existed a trade‐off between L ‐valine production and biomass formation, which was optimized for the most efficient L ‐valine production. Furthermore, acetic acid feeding strategy was optimized based on flux response analysis. The final fed‐batch cultivation strategy allowed production of 32.3 g/L L ‐valine, the highest concentration reported for E. coli. This approach of employing systems‐level analysis of metabolic fluxes in developing fed‐batch cultivation strategy would also be applicable in developing strategies for the efficient production of other bioproducts. Biotechnol. Bioeng. 2011; 108:934–946. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
In recent years, the development of advanced systems for bioprocess monitoring and control has become an area of intensive research. Along with traditional techniques, there are several new approaches which are increasingly being applied to bioprocess operations. Among these, of special note is expert system technology, which provides possibilities for the design of efficient bioprocess control systems with new functional capabilities. This technology has been successfully applied to variety of microbial processes at laboratory and industrial scale. The present paper analyzes the possibility for application of expert systems to animal cell cultures processes whose high complexity is well suited to expert control. The discussion focuses on the organization and the functionality of the intelligent control systems, and covers some practical aspects of their design.  相似文献   

13.
Since their discovery many decades ago, Pseudomonas putida and related subspecies have been intensively studied with regard to their potential application in industrial biotechnology. Today, these Gram-negative soil bacteria, traditionally known as well-performing xenobiotic degraders, are becoming efficient cell factories for various products of industrial relevance including a full range of unnatural chemicals. This development is strongly driven by systems biotechnology, integrating systems metabolic engineering approaches with novel concepts from bioprocess engineering, including novel reactor designs and renewable feedstocks.  相似文献   

14.
Process intensification is necessary to create economical processes. Cleavage reaction is one of the critical unit operations in peptide manufacturing processes as it involves cutting of concatemer expressed to obtain monomer. In this paper, solubilization and cleavage reaction have been merged into a single unit operation so as to allow for simultaneous solubilization and cleavage. Critical variables such as urea concentration, calcium chloride concentration, pH, and enzyme loading were optimized using quality by design (QbD) principles. The subsequent RP-HPLC unit operation was also intensified with respect to elution gradient and product stability in elution buffer so as to facilitate direct freeze-drying and storage. The proposed three-step process was analysed for its economics and compared with the previous generation process, showing significant improvements including a 21% reduction in batch time, 27% increase in productivity, and 30% reduction in manufacturing cost. The work illustrates the effectiveness of applying QbD principles and process intensification for creation of a more efficient manufacturing bioprocess.  相似文献   

15.
The efficient expression and purification of an interfacially active peptide (mLac21) was achieved by using bioprocess-centered molecular design (BMD), wherein key bioprocess considerations are addressed during the initial molecular biology work. The 21 amino acid mLac21 peptide sequence is derived from the lac repressor protein and is shown to have high affinity for the oil-water interface, causing a substantial reduction in interfacial tension following adsorption. The DNA coding for the peptide sequence was cloned into a modified pET-31(b) vector to permit the expression of mLac21 as a fusion to ketosteroid isomerase (KSI). Rational iterative molecular design, taking into account the need for a scaleable bioprocess flowsheet, led to a simple and efficient bioprocess yielding mLac21 at 86% purity following ion exchange chromatography (and >98% following chromatographic polishing). This case study demonstrates that it is possible to produce acceptably pure peptide for potential commodity applications using common scaleable bioprocess unit operations. Moreover, it is shown that BMD is a powerful strategy that can be deployed to reduce bioseparation complexity.  相似文献   

16.
Biosurfactants are economically most sought after biotechnological compounds of the 21st century. However, inefficient bioprocessing has mitigated the economical commercial production of these compounds. Although much work is being done on the use of low-cost substrates for their production, a paucity of literature exists on the upcoming bioprocess optimization strategies and their successes and potential for economical biosurfactant production. This review discusses some of the latest developments and most promising strategies to enhance and economize the biosurfactant production process. Recent market analysis, developments in the field of optimally formulated cost credit substrates for enhanced product formation and subsequent process economization are few of the critical aspects highlighted here. Use of nanoparticles and coproduction of biosurfactant along with other commercially important compounds like enzymes, are other upcoming bioprocess intensification strategies. The recent developments discussed here would not only give an overview of pertinent parameters for economic biosurfactant production but would also bring to fore multiple strategies that would open up new avenues of research on biosurfactant production. This would go a long way in making biosurfactants a commercially successful compound of the current century.  相似文献   

17.
A key challenge for bioprocess engineering is the identification of the optimum process conditions for the production of biochemical and biopharmaceutical compounds using prokaryotic as well as eukaryotic cell factories. Shake flasks and bench-scale bioreactor systems are still the golden standard in the early stage of bioprocess development, though they are known to be expensive, time-consuming, and labor-intensive as well as lacking the throughput for efficient production optimizations. To bridge the technological gap between bioprocess optimization and upscaling, we have developed a microfluidic bioreactor array to reduce time and costs, and to increase throughput compared with traditional lab-scale culture strategies. We present a multifunctional microfluidic device containing 12 individual bioreactors (Vt = 15 µl) in a 26 mm × 76 mm area with in-line biosensing of dissolved oxygen and biomass concentration. Following initial device characterization, the bioreactor lab-on-a-chip was used in a proof-of-principle study to identify the most productive cell line for lactic acid production out of two engineered yeast strains, evaluating whether it could reduce the time needed for collecting meaningful data compared with shake flasks cultures. Results of the study showed significant difference in the strains' productivity within 3 hr of operation exhibiting a 4- to 6-fold higher lactic acid production, thus pointing at the potential of microfluidic technology as effective screening tool for fast and parallelizable industrial bioprocess development.  相似文献   

18.
Properties of Bacteria Isolated from Deep-Sea Sediments   总被引:6,自引:0,他引:6       下载免费PDF全文
Thirty-eight isolates were subjected to taxonomic analysis by computer. Of the 38 isolates, 31 were from sediment samples collected at depths from 9,400 to 10,400 meters in the Philippine and Marianas Trenches of the Pacific Ocean, and 7 cultures were from seawater samples collected at various depths from surface to 4,000 meters and from several locations in the Pacific Ocean. A total of 116 characteristics were determined for each isolate, coded, and transferred to punch cards. Similarity values were obtained by computer analysis, with the use of two recently developed computer programs. Five distinct phenetic clusters were observed from the numerical analyses. Four of the clusters were identified as species of the genus Pseudomonas, and one, as an aerogenic species of Aeromonas. Group IV was identified as pigmented Pseudomonas fluorescens, and the major cluster, consisting of groups I and II, which merged at a species level of similarity, was treated as a new species of Pseudomonas. The 38 strain data were compared with data for 132 marine and nonmarine strains previously subjected to computer taxonomic analysis. The barotolerant deep-sea strains, with the exception of the deep-sea P. fluorescens isolates, clustered separately from all other marine strains.  相似文献   

19.
The degree of barotolerance exhibited by Pseudomonas fluorescens and Pseudomonas bathycetes in vitro polyphenylalanine-synthesizing systems can be modified by altering the concentrations of specific ions in the reaction mixture. Hybrid-protein-synthesizing systems, utilizing all the possible S-100 supernatant fluid and ribosome combinations from Escherichia coli, P. fluorescens, and P. bathycetes, were tested for barotolerance under conditions of low (16 mM Mg2+ plus 0 mM Na+) and high (150 mM Na+ plus 60 mM Mg2+) ion concentrations. The results reveal that barotolerant synthesis is a characteristic determined by the origin of the ribosome. Systems utilizing E. coli ribosomes are barosensitive at both low and high ion concentrations, P. fluorescens ribosomes barotolerant under both conditions, and P. bathycetes ribosomes barosensitive at low and barotolerant at high ion concentrations. Therefore, certain concentrations of specific ions will increase barotolerance, but only if the ribosomes are capable of functioning at high pressures.  相似文献   

20.
In situ product recovery is an efficient way to intensify bioprocesses as it can perform adsorption of the desired natural products in the cultivation. However, it is common to use only one adsorbent (liquid or solid) to perform the product recovery. For this study, the use of an in situ product recovery method with three combined commercial resins (HP-20, XAD7HP, and HP-2MG) with different chemical properties was performed. A new yeast strain of Saccharomyces cerevisiae was engineered using CRISPR Cas9 (strain EJ2) to deliver heterologous expression of oxygenated acetylated taxanes that are precursors of the anticancer drug Taxol ® (paclitaxel). Microscale cultivations using a definitive screening design (DSD) were set to get the best resin combinations and concentrations to retrieve high taxane titers. Once the best resin treatment was selected by the DSD, semi-continuous cultivation in high throughput microscale was performed to increase the total taxanes yield up to 783 ± 33 mg/L. The best T5α-yl Acetate yield obtained was up to 95 ± 4 mg/L, the highest titer of this compound ever reported by a heterologous expression. It was also observed that by using a combination of the resins in the cultivation, 8 additional uncharacterized taxanes were found in the gas chromatograms compared to the dodecane overlay method. Lastly, the cell-waste reactive oxygen species concentrations from the yeast were 1.5-fold lower in the resin's treatment compared to the control with no adsorbent aid. The possible future implications of this method could be critical for bioprocess intensification, allowing the transition to a semi-continuous flow bioprocess. Further, this new methodology broadens the use of different organisms for natural product synthesis/discovery benefiting from clear bioprocess intensification advantages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号