首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using microparticles as the capture surface and fluorescence resonance energy transfer as the detection technology, we have demonstrated the feasibility of performing the invasive cleavage reaction on a solid phase. An effective tool for many genomic applications, the solution phase invasive cleavage assay is a signal amplification method capable of distinguishing nucleic acids that differ by only a single base mutation. The method positions two overlapping oligonucleotides, the probe and upstream oligonucleotides, on the target nucleic acid to create a complex recognized and cleaved by a structure-specific 5′-nuclease. For microarray and other multiplex applications, however, the method must be adapted to a solid phase platform. Effective cleavage of the probe oligonucleotide occurred when either of the two required overlapping oligonucleotides was configured as the particle-bound reagent and also when both oligonucleotides were attached to the solid phase. Positioning probe oligonucleotides away from the particle surface via long tethers improved both the signal and the reaction rates. The particle-based invasive cleavage reaction was capable of distinguishing the ApoE Cys158 and Arg158 alleles at target concentrations as low as 100 amol/assay (0.5 pM).  相似文献   

2.
DNA analysis by flow cytometry   总被引:2,自引:0,他引:2  
Accurate quantification of DNA from cells of several species is possible with flow cytometry. When one species is used as a reference, cytometric readings from two or more different species can be compared to obtain relative percent DNA or DNA indices. Differences in DNA from the male and female of the same species also can be measured. The method allows rapid screening of chromosomal abnormalities among large clinical populations, and evaluation of errors of sex determination such as XY sex reversal.  相似文献   

3.
A nonparametric statistical test for the analysis of flow cytometry derived histograms is presented. The method involves smoothing and translocation of data, area normalization, channel by channel determination of the mean and S.D., and use of Bayes' theorem for unknown histogram classification. With this statistical method, different sets of histograms from numerous biological systems can be compared.  相似文献   

4.
5.
Flow cytometry (FCM) allows the simultaneous measurement of multiple fluorescences and light scatter induced by illumination of single cells or microscopic particles in suspension, as they flow rapidly through a sensing area. In some systems, individual cells or particles may be sorted according to the properties exhibited. By using appropriate fluorescent markers, FCM is unique in that multiple structural and functional parameters can be quantified simultaneously on a single-particle basis, whereas up to thousands of biological particles per second may be examined. FCM is increasingly used for basic, clinical, biotechnological, and environmental studies of biochemical relevance. In this critical review, we summarize the main advantages and limitations of FCM for biochemical studies and discuss briefly the most relevant parameters and analytical strategies. Graphical examples of the biological information provided by multiparametric FCM are presented. Also, this review contains specific sections on flow cytoenzymology, FCM analysis of isolated subcellular organelles, and cell-free FCM.  相似文献   

6.
To date microsphere-based assays in flow cytometry have focused on the detection of antibody or antigen. Most studies have been research based to evaluate the performance of the technique relative to conventional techniques. However, there have not been any carefully controlled studies of the sensitivity and specificity, as well as analytic sensitivity of the FMIA technique. As such, it is difficult to document advantages of this tecnique clearly. The data suggest that FMIA is considerably more sensitive than conventional techniques, and the ability to analyze for multiple analytes in one sample dilution is attractive. This ability to simultaneously analyze for multiple samples is primarily dependent upon the size difference as sensed by FALS of the microspheres. However, it is also possible to use microspheres of the same size but that differ in either fluorescence or RALS signal. If microspheres of the same size are used but one fluoresces red and the signal in the assay uses a green fluorochrome, then the two microspheres can be separated by their red fluorescence. Using this technique, one can increase the number of microspheres that can be used in an assay. It is also possible to use microspheres of the same size but with different abilities to scatter the incident light at right angles. The use of these microspheres is then similar to the nonfluorescent versus red microspheres. By the judicious combination of microsphere size, it is possible to easily differentiate eight different microspheres. With the addition of a fluorescebt dye and/or differences in right-angle light-scatter capabilities, the number of different microspheres that can be used simultaneously becomes quite large. In practice, the number of microspheres that can be differentiated is no doubt greater than the number of analytes that need to be assayed in one assay.Although the apparent increase in sensitivity and the ability to simultaneously detect and quantitate numerous analytes are important attributes of FMIA, there are drawbacks to this method. Although the FMIA lends itself well to one-step no-wash procedures, when wash steps are necessary they are time-consuming and ineffecient. Most wash steps in FMIA use centrifugation of the microspheres to remove them from the reagent. There is a significant loss of microspheres in these wash steps, which are time-consuming. There are studies ussing vacuum filtration of the suspension to separate the microspheres from the reagents. A number of different groups are pursuing an automated or semiautomated method for the efficient washing and reagent delivery system for FMIA. Commercial systems are being developed that may allow for the easier handling of these reagents.Numerous groups are investigating the use of microspheres and flow cytometry primarily in immunoassay development. The procedure has the advantages of the simultaneous yet discrete analysis of multiple analytes and the inherent increase in sensitivity using fluorescence over other signals. There will no doubt be wider applications  相似文献   

7.
8.
9.
C Dive  P Workman  J V Watson 《Cytometry》1987,8(6):552-561
Flow cytoenzymology is the determination of enzyme activities or concentrations in single intact cells. Using the flow cytometer built and designed in our laboratory and recent modifications to hardware and software, we have developed an improved dynamic flow cytoenzymological procedure for the assay of cellular enzyme kinetics. The reaction mixture is sampled continuously, and the computer clock incorporates time as a parameter for kinetic determinations. Conditions for cellular esterase analysis were optimized and the rates of hydrolysis of two fluorogenic substrates, fluorescein diacetate (FDA) and 4-methylumbelliferone acetate (MUA), by esterases in EMT6 mouse mammary tumor cells were studied. Reaction kinetics were characterized, and Km values of 19 and 72 microM were obtained for the hydrolysis of FDA and MUA respectively. The kinetics of the cellular efflux of fluorescein were investigated, and a half-life of 7.5 min obtained. Enzyme inhibition kinetics were investigated using the competitive substrates p-nitrophenyl acetate and phenyl acetate, and the carbamoylating agents physostigmine and n-butyl isocyanate. The latter was particularly potent with an I50 of 4.8 X 10(-5) M for FDA hydrolysis compared with 6.5 X 10(-3) M for physostigmine. The I50 of 8.8 X 10(-5) M for n-butyl isocyanate inhibition of MUA hydrolysis was similar to that obtained with FDA as substrate. By monitoring FDA and MUA reactions separately and simultaneously, we showed them to act as competitive substrates. A comparison of flow cytoenzymological and conventional spectrofluorimetric analysis was also made, and differences identified in some cases.  相似文献   

10.
The DNase I digestion kinetics of DNA in isolated nuclei (from HeLa or murine mammary carcinoma, 67 cells) were assayed flow cytometrically by measuring the changes in ethidium bromide (EtBr) fluorescence following various digestion time intervals. The DNase I digestion curve was characterized by an initial 25-30% increase in fluorescence upon addition of the enzyme, a rapid reduction in fluorescence to approximately 50-55% in 30 minutes, and a limit digest of 45-50% beyond 45 minutes. Throughout digestion, the DNA histogram retained its characteristic bimodal shape, showing that histogram rearrangement was not responsible for the changes in EtBr fluorescence. Irradiation with 5 X 10(6) rads (137Cs-gamma-rays) or exposure to 50 mM EDTA caused an increase in EtBr fluorescence similar to that caused by DNase I, suggesting that DNA nicking and/or chromatin loosening were responsible for this increase. Residual DNA assayed by the solubilization of 14C-TdR (thymidine)-labeled DNA indicated a similar kinetic pattern without the initial increase. However, at the limit digest, the fraction of DNA remaining trichloroacetic acid (TCA) insoluble (10%) was smaller than that measured by loss of EtBr fluorescence (50% of initial, 40% of maximum). Part of this difference was due to the presence of TCA soluble DNA trapped within the nuclear matrix (15-20%). This trapped DNA was released when the digested nuclei were exposed to 0.5-1.0 M NaCl just prior to EtBr staining. Exposure of HeLa cells to three agents that are believed to cause changes in chromatin structure resulted in alterations in the DNase I digestion kinetics measured flow cytometrically.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Tárnok A 《Cytometry》1996,23(1):82-89
Two flow cytometric techniques were used to measure rapid transient changes in [Ca2+] in the neuronal cell line NH15-CA2. Using on-line injection, the cell suspension and stimulating solution are mixed and delivered to the detection point by a rapid increase in sample pressure. In NH15-CA2, injection of medium alone resulted in [Ca2+]i increase. Using the fixed-time method, where cells are maintained at constant pressure, no [Ca2+ ]i, increase was observed with medium alone. These results show that a rapid pressure increase alone alters the [Ca2+]i in NH15-CA2 cells. Both methods showed similar kinetics of [Ca2+], in response to bradykinin but the fixed-time method was found to be better for determination of the percentage of responsive cells.  相似文献   

12.
Chromosome analysis by high illumination flow cytometry   总被引:2,自引:0,他引:2  
Fluorescence measurements from metaphase chromosomes of the Chinese hamster, stained with propidium iodide excited at high illumination irradiance, completely resolve each chromosome type. The measurements are performed in a specially designed flow cytometer that achieves high irradiance (4 MW/cm2) by using high power laser output (2 W at 488 nm) focused to small spot size (1% irradiance variation over 2 microns). The coefficient of variation of each chromosome peak is near 1.5%. Saturation of the fluorescence transition and photobleaching, two consequences of high irradiance, are shown to occur. Even with a nonlinear dependence of fluorescence upon illumination irradiance, fluorescence retains a proportional response to chromosome type; each chromosome peak maintains a consistent ratio to the others at every irradiance. No perturbation of fluorescence by the optical or geometrical properties of the chromosomes is evident. The advantages of high irradiance illumination are an increase in fluorescence sufficient to reduce the statistical error in photoelectron number to a low level and reduced influence of laser power fluctuations and variable chromosome flow trajectories on the precision. These benefits improve the resolution of chromosome analysis by flow cytometry, particularly the resolution of smaller chromosomes.  相似文献   

13.
R C Mann 《Cytometry》1987,8(2):184-189
Increasing numbers of parameters that are accessible to simultaneous measurement in flow cytometric instruments, combined with the extremely large sample sizes common in flow cytometry, make it necessary to examine methods of multivariate statistics for their applicability to problems of visualization and quantitative analysis of flow cytometric data. This article describes some approaches to dimensionality reduction that appear well suited for data sets obtained by flow cytometry.  相似文献   

14.
We have investigated the use of fluorescence banding patterns for the resolution of metaphase chromosomes by slit-scan flow cytometry. Fluorescence scans of R-banded chromosomes have been obtained for the entire human karyotype. Metaphase chromosomes were R-banded in suspension by staining with chromomycin A3 after hypotonic treatment in Ohnuki's buffer. Specific fluorescent landmark bands were detected for human chromosomes 1-12. Scans obtained for chromosomes 13-22 did not contain sufficient information for classification. Characteristic fluorescence patterns for human chromosomes 1 and 3 provided the clearest evidence for the detection of R-bands by slit-scan flow cytometry. Specific patterns were detected for human chromosomes 9-12 in which the number and placement of the fluorescent bands served as classifiers.  相似文献   

15.
A new program is described for the analysis of DNA histograms from flow cytometry. The fundamental model representing the cell population is similar to one described previously. It assumes the population is grouped into compartments, each consisting of cells having approximately the same DNA content. After staining the cells with an appropriate fluorochrome, the fluorescence distribution of cells within each compartment is assumed to be Gaussian. In the present algorithm, the parameters of the model can either be computed directly by the program from the data, or can be specified as input by the user. When synchronous cell populations lacking distinct G1 and G2/M phases are analyzed, the parameter values must first be obtained using an appropriate control. Percentages of cells in the various compartments are computed using a gradient search method described by Bevington.  相似文献   

16.
Modified histogram subtraction technique for analysis of flow cytometry data   总被引:15,自引:0,他引:15  
W R Overton 《Cytometry》1988,9(6):619-626
Analysis of flow cytometry histogram data by the subjective selection of an integration window can be a tedious and time-consuming task and is often inaccurate. A new method for automated calculation of the percent positive from immunofluorescence histograms is presented. This new method is a modification of the currently used method of channel-by-channel histogram subtraction. Its accuracy is compared to that of the channel-by-channel histogram subtraction method and to another currently used automated method, which selects an integration window by finding the channels that contain the most fluorescent 2% of a control histogram. The new histogram subtraction method is objective, easy to use, and is more accurate than other currently used automated analysis methods. PASCAL source code is given for each method of analysis.  相似文献   

17.
C van Oven  J A Aten 《Cytometry》1990,11(5):630-635
An instrument is described which analyses shapes of fluorescence profiles generated by particles passing through the focussed laser beam of a flow cytometer. The output signal of this pulse-shape analyzer is used as input for the signal processing electronics of a commercial flow cytometer system. The instrument detects dips in pulse-profiles; a shape parameter named Pulse Dip Index (PDI) is defined as the ratio of the integrated signal from the beginning of the pulse until the first dip, relative to the integrated signal of the complete profile. This PDI is similar to the Centromeric Index of chromosomes. The composition of aggregates in mixtures of fluorescent particles of different sizes was evaluated by PDI analysis. In our experiments the PDI was determined within 30 microseconds from the onset of the pulse-profile and particles with a specified morphology of interest were selected for on-line registration of their profiles as digitized pulse-shapes. In a cell sorter system, the PDI can be used as a parameter for sorting.  相似文献   

18.
Cell size is a defining characteristic central to cell function and ultimately to tissue architecture. The ability to sort cell subpopulations of different sizes would facilitate investigation at genomic and proteomic levels of mechanisms by which cells attain and maintain their size. Currently available cell sorters, however, cannot directly measure cell volume electronically, and it would therefore be desirable to know which of the optical measurements that can be made in such instruments provide the best estimate of volume. We investigated several different light scattering and fluorescence measurements in several different cell lines, sorting cell fractions from the high and low end of distributions, and measuring volume electronically to determine which sorting strategy yielded the best separated volume distributions. Since we found that different optical measurements were optimal for different cell lines, we suggest that following this procedure will enable other investigators to optimize their own cell sorters for volume-based separation of the cell types with which they work.  相似文献   

19.
Flow cytometry (FCM) is an analytical tool widely used for cancer and HIV/AIDS research, and treatment, stem cell manipulation and detecting microorganisms in environmental samples. Current data standards do not capture the full scope of FCM experiments and there is a demand for software tools that can assist in the exploration and analysis of large FCM datasets. We are implementing a standardized approach to capturing, analyzing, and disseminating FCM data that will facilitate both more complex analyses and analysis of datasets that could not previously be efficiently studied. Initial work has focused on developing a community-based guideline for recording and reporting the details of FCM experiments. Open source software tools that implement this standard are being created, with an emphasis on facilitating reproducible and extensible data analyses. As well, tools for electronic collaboration will assist the integrated access and comprehension of experiments to empower users to collaborate on FCM analyses. This coordinated, joint development of bioinformatics standards and software tools for FCM data analysis has the potential to greatly facilitate both basic and clinical research--impacting a notably diverse range of medical and environmental research areas.  相似文献   

20.
A microsample delivery system (MSDS) was tested for automatic flow cytometry (FCM) analysis of DNA synthesis in stimulated human peripheral blood lymphocytes (PBL) cultivated in wells of microtiter plates. After incubation, either for 1-3 days with phytohemagglutinin, concanavalin A, and pokeweed mitogen, or for 7 days with allogenic PBL, the cells, while in the wells, were washed in hypotonic Tris buffer and stained with ethidium bromide-RNAse solution. The results obtained from quintuplicate replicated wells, each of the five containing the same control or stimulated cultures, were reproducible in terms of the number of nuclei counted in each histogram of control, mitogen-stimulated PBL, and mixed lymphocyte cultures (MLC). Using a computer program that superimposes histograms and calculates their differences on the scale of fluorescence intensity, it was possible to quantify the intensity of the response to the mitogenic stimuli. This approach to the study of lymphocyte proliferation offers not only a simpler and faster analysis of DNA synthesis than the method of 3H-thymidine incorporation, but it also allows for the analysis of other FCM parameters, such as forward and 90 degrees light scatter and double fluorescence labelling of PBL nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号