首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role and interdependence of CD8+ and CD4+ alpha beta-T cells in the acute response after respiratory infection with the murine parainfluenza type 1 virus, Sendai virus, has been analyzed for H-2b mice. Enrichment of CD8+ virus-specific CTL effectors in the lungs of immunologically intact C57BL/6 animals coincided with the clearance of the virus from this site by day 10 after infection. Removal of the CD4+ T cells by in vivo mAb treatment did not affect appreciably either the recruitment of CD8+ T cells to the infected lung, or their development into virus-specific cytotoxic effectors. In contrast, depletion of the CD8+ subset delayed virus clearance, although most mice survived the infection. Transgenic H-2b F3 mice homozygous (-/-) for a beta 2 microglobulin (beta 2-m) gene disruption, which lack both class I MHC glycoproteins and mature CD8+ alpha beta-T cells, showed a comparable, delayed clearance of Sendai virus from the lung. Virus-specific, class II MHC-restricted CTL were demonstrated in both freshly isolated bronchoalveolar lavage populations and cultured lymph node and spleen tissue from the beta 2-m (-/-) transgenics. Treatment of the beta 2-m (-/-) mice with the mAb to CD4 led to delayed virus clearance and death, which was also the case for normal mice that were depleted simultaneously of the CD4+ and CD8+ subsets. These results indicate that, although classical class I MHC-restricted CD8+ cytotoxic T cells normally play a dominant role in the recovery of mice acutely infected with Sendai virus, alternative mechanisms involving CD4+ T cells exist and can compensate, in time, for the loss of CD8+ T cell function.  相似文献   

2.
CD4+ T cells play an important role in regulating the immune response; their contribution to virus clearance is variable. Mice that lack CD4+ T cells (CD4-/- mice) and are therefore unable to produce neutralizing antibodies cleared viscero-lymphotropic lymphocytic choriomeningitis virus (LCMV) strain WE when infected intravenously with a low dose (2 x 10(2) PFU) because of an effective CD8+ cytotoxic T-cell (CTL) response. In contrast, infection with a high dose (2 x 10(6) PFU) of LCMV strain WE led to expansion of antiviral CTL, which disappeared in CD4-/- mice; in contrast, CD4+ T-cell-competent mice developed antiviral memory CTL. This exhaustion of specific CTL caused viral persistence in CD4-/- mice, whereas CD4+ T-cell-competent mice eliminated the virus. After infection of CD4-/- mice with the faster-replicating LCMV strain DOCILE, abrogation of CTL response and establishment of viral persistence developed after infection with a low dose (5 x 10(2) PFU), i.e., an about 100-fold lower dose than in CD(4+)-competent control mice. These results show that absence of T help enhances establishment of an LCMV carrier state in selected situations.  相似文献   

3.
We have shown in a murine model system for acute, lethal cytomegalovirus (CMV) disease in the immunocompromised natural host that control of virus multiplication in tissues, protection from virus-caused tissue destruction, and survival are mediated by virus-specific CD8+ CD4-T lymphocytes. Protection from a lethal course of disease did not result in a rapid establishment of virus latency, but led to a long-lasting, persistent state of infection. The CD8- CD4+ subset of T lymphocytes was not effective by itself in controlling murine CMV (MCMV) multiplication in tissue or essential for the protective function of the CD8+ CD4- effector cells. The antiviral efficacy of the purified CD8+ CD4- subset was not impaired by preincubation with fibroblasts that presented viral structural antigens, but was significantly reduced after depletion of effector cells specific for the nonstructural immediate-early antigens of MCMV, which are specified by the first among a multitude of viral genes expressed during MCMV replication in permissive cells. Thus, MCMV disease provides the first example of a role for nonstructural herpesvirus immediate-early antigens in protective immunity.  相似文献   

4.
Although the CD4(+)- and CD8(+)-T-cell responses to the hepatitis B virus (HBV) are thought to be crucial for the control of HBV infection, the relative contribution of each T-cell subset as an effector of viral clearance is not known. To examine this question, we monitored the course of HBV infection in control, CD4-depleted, and CD8-depleted chimpanzees. Our results demonstrate that CD8(+) cells are the main effector cells responsible for viral clearance and disease pathogenesis during acute HBV infection, and they suggest that viral clearance is mediated by both noncytolytic and cytolytic effector functions of the CD8(+)-T-cell response.  相似文献   

5.
B L Lohman  E S Razvi    R M Welsh 《Journal of virology》1996,70(11):8199-8203
Infection of mice with lymphocytic choriomeningitis virus (LCMV) causes a major expansion of CD8+ T cells followed by a period of immune downregulation that coincides with the induction of lymphocyte apoptosis in the mouse spleen. CD95 (Fas) and its ligand are important for regulating peripheral T-lymphocyte numbers and can mediate apoptosis of mature T lymphocytes. We infected CD95- and CD95L-deficient mice (lpr and gld, respectively) with LCMV to determine if the immune downregulation that occurred following resolution of the LCMV infection was due to a CD95-dependent apoptotic mechanism. Lymphocytes from LCMV-infected lpr and gld mice were capable of normal T-cell expansion and cytolytic function but were, in contrast to activated cells from normal virus-infected mice, relatively more resistant to T-cell receptor-induced apoptosis in vitro. However, in vivo there were significant numbers of apoptotic cells in the spleens of lpr and gld mice recovering from the infection, and the T-cell number and cytolytic activity decreased to normal postinfection levels. Thus, CD95 is not required for the immune downregulation of the CD8+-T-lymphocyte response following acute LCMV infection.  相似文献   

6.
Current vaccines designed to promote humoral immunity to respiratory virus infections also induce potent CD4+ T cell memory. However, little is known about the impact of primed CD4+ T cells on the immune response to heterologous viruses that are serologically distinct, but that share CD4+ T cell epitopes. In addition, the protective capacity of primed CD4+ T cells has not been fully evaluated. In the present study, we addressed these two issues using a murine Sendai virus model. Mice were primed with an HN421-436 peptide that represents the dominant CD4+ T cell epitope on the hemagglutinin-neuraminidase (HN) of Sendai virus. This vaccination strategy induced strong CD4+ T cell memory to the peptide, but did not induce Abs specific for the Sendai virus virion. Subsequent Sendai virus infection of primed mice resulted in 1) a substantially accelerated virus-specific CD4+ T cell response in the pneumonic lung; 2) enhanced primary antiviral Ab-forming cell response in the mediastinal lymph nodes; and 3) accelerated viral clearance. Interestingly, the virus-specific CD8+ T cell response in the lung and the development of long-term memory CD8+ T cells in the spleen were significantly reduced. Taken together, our data demonstrate that primed CD4+ T cells, in the absence of pre-existing Ab, can have a significant effect on the subsequent immune responses to a respiratory virus infection.  相似文献   

7.
Osteopontin (OPN) has been defined as a key cytokine promoting the release of IL-12 and hence inducing the development of protective cell-mediated immunity to viruses and intracellular pathogens. To further characterize the role of OPN in antiviral immunity, OPN-deficient (OPN-/-) mice were analyzed after infection with influenza virus and vaccinia virus. Surprisingly, we found that viral clearance, lung inflammation, and recruitment of effector T cells to the lung were unaffected in OPN-/- mice after influenza infection. Furthermore, effector status of T cells was normal as demonstrated by normal IFN-gamma production and CTL lytic activity. Moreover, activation and Th1 differentiation of naive TCR transgenic CD4+ T cells by dendritic cells and cognate Ag was normal in the absence of OPN in vitro. Contrary to a previous report, we found that OPN-/- mice mounted a normal immune response to Listeria monocytogenes. In conclusion, OPN is dispensable for antiviral immune responses against influenza virus and vaccinia virus.  相似文献   

8.
The murine immune response to lymphocytic choriomeningitis virus (LCMV) infection involves the activation of CD8+, class I MHC-restricted and virus-specific CTL. At times coinciding with CTL activation, high levels of IL-2 gene expression and production occur, the IL-2R is expressed, and T cell blastogenesis and proliferation are induced. We have previously found that, although both CD4+ and CD8+ T cell subsets transcribe IL-2, the CD4+ subset appears to be the major producer of IL-2 whereas the CD8+ subset appears to be the major proliferating population when the subsets are separated after activation in vivo. The studies presented here were undertaken to examine the contribution made by the CD4+ subset to lymphocyte proliferation in vivo. Responses to LCMV infection were examined in intact mice and in mice depleted of CD4+ or CD8+ subsets by antibody treatments in vivo. Protocols were such that in vivo treatments with anti-CD4 or anti-CD8 depleted the respective subset by greater than 90%. In situ hybridizations demonstrated that the IL-2 gene was expressed in non-B lymphocytes isolated from either CD4+ cell-depleted or CD8+ cell-depleted mice on day 7 post-infection with LCMV. When placed in culture, however, cells from CD8+ cell-depleted mice produced significantly higher levels of detectable IL-2 than did cells isolated from CD4+ cell-depleted mice on day 7 post-infection. IL-2 was apparently produced in vivo in mice depleted of either CD4+ or CD8+ cells, as expression of the gene for the p55 chain of the IL-2R, IL-2 responsiveness, and lymphocyte proliferation were observed with cells isolated from both sets of mice. Lymphocyte proliferation was shown to be sustained in mice depleted of CD4+ cells in vivo by three criteria: 1) non-B lymphocytes isolated from infected mice depleted of CD4+ cells underwent more DNA synthesis than did those isolated from uninfected mice or from infected mice depleted of CD8+ cells; 2) leukocyte yields were expanded during infection of CD4+ cell-depleted mice; and 3) CD8+ cell numbers were increased during infection of CD4+ cell-depleted mice. The majority of non-B lymphocytes having the characteristics of blast lymphocytes was recovered in the CD8+ populations isolated from infected CD4+ cell-depleted mice. These findings suggest that the requirement for the CD4+ subset to sustain CD8+ lymphocyte proliferation in vivo is limited, and that CD4+ and CD8+ cell types can function independently in many aspects of their responses to viral infections.  相似文献   

9.
Herpetic stromal keratitis (SK), a frequent cause of visual impairment, is considered to represent an immune-mediated inflammatory response to persistent herpes simplex virus virions or subcomponents within the corneal stroma. The experimental disease in mice involves the essential participation of T lymphocytes, but the role of T-lymphocyte subsets in either mediating or controlling the disease is uncertain. In this report, rat monoclonal antibodies were used to selectively deplete mice in vivo of CD4+ (helper-inducer) and CD8+ (cytotoxic-suppressor) T-cell populations and the effect on herpetic SK was evaluated. As measured by flow cytometry, mice treated with anti-CD4 monoclonal antibody (GK 1.5) were greater than 95% depleted of CD4+ T lymphocytes and mice treated with anti-CD8 monoclonal antibody (2.43) were 90% depleted of CD8+ T lymphocytes. Depleted and nonspecific mouse ascites-treated control mice were infected topically on the corneas with herpes simplex virus type 1, and the induction of various immune parameters during the acute infection was evaluated. CD4+-depleted mice failed to produce either a significant antiviral antibody or delayed-type hypersensitivity response but were capable of producing normal cytotoxic T-lymphocyte responses. In contrast, CD8+-depleted mice produced antiviral antibody and delayed-type hypersensitivity responses comparable with those in control animals, but cytotoxic T-lymphocyte responses were markedly reduced. Clinical observations of the corneas revealed that SK in CD4+-depleted mice was significantly reduced, whereas in CD8+-depleted mice SK developed more rapidly, was more severe, and involved a greater percentage of mice. These observations implicate the CD4+ T-lymphocyte subset as the principal mediators of SK and CD8+ T lymphocytes as possible regulators that control the severity of SK.  相似文献   

10.
Mutations in viral genomes that affect T-cell-receptor recognition by CD8+ cytotoxic T lymphocytes have been shown to allow viral evasion from immune surveillance during persistent viral infections. Although CD4+ T-helper cells are crucially involved in the maintenance of effective cytotoxic T-lymphocyte and neutralizing-antibody responses, their role in viral clearance and therefore in imposing similar selective pressures on the virus is unclear. We show here that transgenic virus-specific CD4+ Tcells, transferred into mice persistently infected with lymphocytic choriomeningitis virus, select for T-helper epitope mutant viruses that are not recognized. Together with the observed antigenic variation of the same T-helper epitope during polyclonal CD4+ T-cell responses in infected pore-forming protein-deficient C57BL/6 mice, this finding indicates that viral escape from CD4+ T lymphocytes is a possible mechanism of virus persistence.  相似文献   

11.
Shrestha B  Diamond MS 《Journal of virology》2007,81(21):11749-11757
West Nile virus (WNV) is a neurotropic flavivirus that causes encephalitis, most frequently in elderly and immunocompromised humans. Previous studies demonstrated that CD8+ T cells utilize perforin-dependent cytolytic mechanisms to limit WNV infection. Nonetheless, the phenotype of perforin-deficient CD8+ T cells was not as severe as that of an absence of CD8+ T cells, suggesting additional effector control mechanisms. In this study, we evaluated the contribution of Fas-Fas ligand (FasL) interactions to CD8+ T-cell-mediated control of WNV infection. Notably, the cell death receptor Fas was strongly upregulated on neurons in culture and in vivo after WNV infection. gld mice that were functionally deficient in FasL expression showed increased susceptibility to lethal WNV infection. Although antigen-specific priming of CD8+ T cells in peripheral lymphoid tissues was normal in gld mice, increased central nervous system (CNS) viral burdens and delayed clearance were observed. Moreover, the adoptive transfer of WNV-primed wild-type but not gld CD8+ T cells to recipient CD8(-/-) or gld mice efficiently limited infection in the CNS and enhanced survival rates. Overall, our data suggest that CD8+ T cells also utilize FasL effector mechanisms to contain WNV infection in Fas-expressing neurons in the CNS.  相似文献   

12.
Cytolytic T-lymphocyte (CTL) activity specific for respiratory syncytial (RS) virus was investigated after intranasal infection of mice with RS virus, after intraperitoneal infection of mice with a recombinant vaccinia virus expressing the F glycoprotein, and after intramuscular vaccination of mice with Formalin-inactivated RS virus or a chimeric glycoprotein, FG, expressed from a recombinant baculovirus. Spleen cell cultures from mice previously infected with live RS virus or the F-protein recombinant vaccinia virus had significant CTL activity after one cycle of in vitro restimulation with RS virus, and lytic activity was derived from a major histocompatibility complex-restricted, Lyt2.2+ (CD8+) subset. CTL activity was not restimulated in spleen cells from mice that received either the Formalin-inactivated RS virus or the purified glycoprotein, FG. The protein target structures for recognition by murine CD8+ CTL were identified by using target cells infected with recombinant vaccinia viruses that individually express seven structural proteins of RS virus. Quantitation of cytolytic activity against cells expressing each target structure suggested that 22K was the major target protein for CD8+ CTL, equivalent to recognition of cells infected with RS virus, followed by intermediate recognition of F or N, slight recognition of P, and no recognition of G, SH, or M. Repeated stimulation of murine CTL with RS virus resulted in outgrowth of CD4+ CTL which, over time, became the exclusive subset in culture. Murine CD4+ CTL were highly cytolytic for RS virus-infected cells, but they did not recognize target cells infected with any of the recombinant vaccinia viruses expressing the seven RS virus structural proteins. Finally, the CTL response in peripheral blood mononuclear cells of adult human volunteers was investigated. The detection of significant levels of RS virus-specific cytolytic activity in these cells was dependent on at least two restimulations with RS virus in vitro, and cytolytic activity was derived primarily from the CD4+ subset.  相似文献   

13.
Recent studies have established a protective role for T cells during primary West Nile virus (WNV) infection. Binding of CD40 by CD40 ligand (CD40L) on activated CD4+ T cells provides an important costimulatory signal for immunoglobulin class switching, antibody affinity maturation, and priming of CD8+ T-cell responses. We examined here the function of CD40-dependent interactions in limiting primary WNV infection. Compared to congenic wild-type mice, CD40(-/-) mice uniformly succumbed to WNV infection. Although CD40(-/-) mice produced low levels of WNV-specific immunoglobulin M (IgM) and IgG, viral clearance from the spleen and serum was not altered, and CD8+ T-cell priming in peripheral lymphoid tissues was normal. Unexpectedly, CD8+ T-cell trafficking to the central nervous system (CNS) was markedly impaired in CD40(-/-) mice, and this correlated with elevated WNV titers in the CNS and death. In the brains of CD40(-/-) mice, T cells were retained in the perivascular space and did not migrate into the parenchyma, the predominant site of WNV infection. In contrast, in wild-type mice, T cells trafficked to the site of infection in neurons. Beside its role in maturation of antibody responses, our experiments suggest a novel function of CD40-CD40L interactions: to facilitate T-cell migration across the blood-brain barrier to control WNV infection.  相似文献   

14.
Sendai virus is eliminated from the respiratory tract of gamma interferon (IFN-gamma) -/- BALB/c mice with normal kinetics. The level of virus-specific cytotoxic T-lymphocyte (CTL) activity in the cell population recovered by bronchoalveolar lavage is unimpaired, the prevalence of interleukin-4 (IL-4)-producing cells is increased, and the titers of virus-specific immunoglobulins IgG1 and IgG2b are higher in the IFN-gamma -/- mice. The emergence of this T-helper 2 response profile in both lymphoid tissue and the pneumonic lung has no obvious deleterious consequences. Virus clearance is slightly delayed following depletion of the CD4+ subset, with the effect being similar in magnitude for IFN-gamma -/- and +/+ mice. However, the generation of CTL precursors (CTLp) is diminished in the IFN-gamma -/- (but not +/+) mice in the absence of concurrent CD4+ T help. Apparently the clonal expansion of the CTLp population can be promoted either by a cytokine (perhaps IL-2) produced by the IFN-gamma -/- CD4+ T cells or by IFN-gamma made by other cell types in the +/+ mice.  相似文献   

15.
CD4 T cell-dependent CD8 T cell maturation   总被引:7,自引:0,他引:7  
We have investigated the contribution of CD4 T cells to the optimal priming of functionally robust memory CD8 T cell subsets. Intranasal infection of CD4 T cell-deficient (CD4(-/-)) mice with lymphocytic choriomeningitis virus resulted in the elaboration of virus-specific CD8 T cell responses that cleared the infection. However, by comparison with normal mice, the virus-specific CD8 T cells in CD4(-/-) mice were quantitatively and qualitatively different. In normal mice, lymphocytic choriomeningitis virus-specific memory CD8 T cells are CD44(high), many are CD122(high), and a majority of these cells regain expression of CD62L overtime. These cells produce IFN-gamma and TNF-alpha, and a subset also produces IL-2. In the absence of CD4 T cell help, a distinct subset of memory CD8 T cells develops that remains CD62L(low) up to 1 year after infection and exhibits a CD44(int)CD122(low) phenotype. These cells are qualitatively different from their counterparts in normal hosts, as their capacity to produce TNF-alpha and IL-2 is diminished. In addition, although CD4-independent CD8 T cells can contain the infection following secondary viral challenge, their ability to expand is impaired. These findings suggest that CD4 T cell responses not only contribute to the optimal priming of CD8 T cells in chronically infected hosts, but are also critical for the phenotypic and functional maturation of CD8 T cell responses to Ags that are more rapidly cleared. Moreover, these data imply that the development of CD62L(high) central memory CD8 T cells is arrested in the absence of CD4 T cell help.  相似文献   

16.
In this study, we have examined the relative contributions of CD4+ and CD8+ T cells in controlling an acute or chronic lymphocytic choriomeningitis virus (LCMV) infection. To study acute infection, we used the LCMV Armstrong strain, which is cleared by adult mice in 8 to 10 days, and to analyze chronic infection, we used a panel of lymphocyte-tropic and macrophage-tropic variants of LCMV that persist in adult mice for several months. We show that CD4+ T cells are not necessary for resolving an acute LCMV infection. CD4+ T-cell-depleted mice were capable of generating an LCMV-specific CD8+ cytotoxic T-lymphocyte (CTL) response and eliminated virus with kinetics similar to those for control mice. The CD8+ CTL response was critical for resolving this infection, since beta 2-microglobulin knockout (CD8-deficient) mice were unable to control the LCMV Armstrong infection and became persistently infected. In striking contrast to the acute infection, even a transient depletion of CD4+ T cells profoundly affected the outcome of infection with the macrophage- and lymphocyte-tropic LCMV variants. Adult mice given a single injection of anti-CD4 monoclonal antibody (GK1.5) at the time of virus challenge became lifelong carriers with high levels of virus in most tissues. Unmanipulated adult mice infected with the different LCMV variants contained virus for prolonged periods (> 3 months) but eventually eliminated infection from most tissues, and all of these mice had LCMV-specific CD8+ CTL responses. Although the level of CTL activity was quite low, it was consistently present in all of the chronically infected mice that eventually resolved the infection. These results clearly show that even in the presence of an overwhelming viral infection of the immune system, CD8+ CTL can remain active for long periods and eventually resolve and/or keep the virus infection in check. In contrast, LCMV-specific CTL responses were completely lost in chronically infected CD4-depleted mice. Taken together, these results show that CD4+ T cells are dispensable for short-term acute infection in which CD8+ CTL activity does not need to be sustained for more than 2 weeks. However, under conditions of chronic infection, in which CD8+ CTLs take several months or longer to clear the infection, CD4+ T-cell function is critical. Thus, CD4+ T cells play an important role in sustaining virus-specific CD8+ CTL during chronic LCMV infection. These findings have implications for chronic viral infections in general and may provide a possible explanation for the loss of human immunodeficiency virus-specific CD8+ CTL activity that is seen during the late stages of AIDS, when CD4+ T cells become limiting.  相似文献   

17.
CD40 ligand is expressed on activated T cells and interacts with CD40 on B cells and monocytes. It is not known what role CD40 ligand plays in the generation of immune responses to viral infection. To address this issue, we examined virus-specific T- and B-cell responses in CD40 ligand-deficient (CD40L-/-) mice following infection with lymphocytic choriomeningitis virus (LCMV). We found that primary anti-LCMV specific antibody responses were severely impaired in CD40L-/- mice, with the defect being most striking for antibody of the immunoglobulin G1 (IgG1) isotype. Interestingly, low levels of LCMV-specific antibodies of the IgG2a, IgG2b, and IgG3 isotypes were made in the CD40L-/- mice, showing that IgG1 responses are totally dependent on CD40L but that at least some IgG2a, IgG2b, and IgG3 responses can be CD40L independent. However, unlike CD40L+/+ mice, CD40L-/- mice were unable to sustain virus-specific antibody responses and showed a gradual decline in serum antibody levels over time. The CD40L-/- mice were also deficient in the generation of memory B cells. In contrast to the severely impaired humoral responses, CD40L-/- mice generated potent virus-specific CD8+ cytotoxic T-lymphocyte responses after LCMV infection and were able to clear the virus. These results show that CD40L does not play a role in generating primary virus-specific CD8+ cytotoxic T-lymphocyte responses but does affect the primary antibody response and the generation of memory B cells.  相似文献   

18.
Infection with Chlamydia pneumoniae is a common cause of acute respiratory disease in man and is also associated with atherosclerotic cardiovascular disorder. Herein, we have compared bacterial load and immune parameters of C. pneumoniae-infected mice genomically lacking T cell coreceptors, cytokine receptors, or cytotoxic effector molecules. A protective role for CD8+ cells is shown by the enhanced severity of infection of CD8-/- or TAP-1-/-/beta2-microglobulin -/- mice. CD8+ cells hindered a parasite growth-promoting role of CD4+ T cells, as indicated by the higher sensitivity to early infection of CD8-/- than CD4-/-/CD8-/- mice, which was further confirmed in experiments in which SCID mice were reconstituted with either CD4+ or CD4+ plus CD8+ T cells. Interestingly, CD4+ T cells played a dual role, detrimental early (14 and 24 days) after infection but protective at later time points (60 days after infection). The CD8+ T cell protection was perforin independent. The early deleterious role of CD4+ in the absence of CD8+ T cells was associated with enhanced IL-4 and IL-10 mRNA levels and delayed IFN-gamma mRNA accumulation in lungs. In line with this, IFN-gammaR-/- (but not TNFRp55 -/-) mice showed dramatically increased susceptibility to C. pneumoniae, linked to reduced inducible nitric oxide synthase (iNOS) mRNA accumulation, but not to diminished levels of specific Abs. The increased susceptibility of iNOS-/- mice indicates a protective role for iNOS activity during infection with C. pneumoniae. The higher sensitivity of IFN-gammaR-/- mice to C. pneumoniae compared with that of SCID or recombination-activating gene-1-/- mice suggested a relevant protective role of IFN-gamma-dependent innate mechanisms of protection.  相似文献   

19.
Innate inflammatory events promoting antiviral defense in the liver against murine cytomegalovirus (MCMV) infection have been characterized. However, the mechanisms that regulate the selective recruitment of inflammatory T lymphocytes to the liver during MCMV infection have not been defined. The studies presented here demonstrate the expression of monokine induced by gamma interferon (IFN-gamma; Mig/CXCL9) and IFN-gamma-inducible protein 10 (IP-10/CXCL10) in liver leukocytes and correlate their production with the infiltration of MCMV-specific CD8 T cells into the liver. Antibody-mediated neutralization of CXCL9 and CXCL10 and studies using mice deficient in CXCR3, the primary known receptor for these chemokines, revealed that CXCR3-dependent mechanisms promote the infiltration of virus-specific CD8 T cells into the liver during acute infection with MCMV. Furthermore, CXCR3 functions augmented the hepatic accumulation of CD8 T-cell IFN-gamma responses to MCMV. Evaluation of protective functions demonstrated enhanced pathology that overlapped with transient increases in virus titers in CXCR3-deficient mice. However, ultimate viral clearance and survival were not compromised. Thus, CXCR3-mediated signals support the accumulation of MCMV-specific CD8 T cells that contribute to, but are not exclusively required for, protective responses in a virus-infected tissue site.  相似文献   

20.
The malaria parasite, Plasmodium yoelii 17X, causes a self-limited, nonlethal infection characterized, in the blood stage, by preferential invasion of reticulocytes. Previous studies have suggested that immunity to the blood stage infection may be related to enhanced levels of class I MHC Ag on the parasitized reticulocyte surface and can be adoptively transferred to immunodeficient mice by immune CD8+ T cells in the absence of CD4+ T cells. To further examine the mechanisms of CD8+ T cell involvement in immunity to blood stage P. yoelii infection, we performed in vivo CD8 depletion and adoptive transfer experiments. Depletion of CD8+ T cells during primary blood stage infection in BALB/c mice did not diminish the ability of the mice to resolve their infections. Spleen cells from immune BALB/c and C57BL/10 mice were transferred to BALB/c-nu/nu and C57BL/10-nu/nu mice, respectively. The recipient mice were CD4 depleted in vivo to kill any transferred CD4+ T cells. The mice failed to control the infection. Populations of CD4-, CD8+ T cells were transferred from immune CBA/CaJ donors to in vivo CD4-depleted CBA/CaJ recipients. The mice were unable to control the infection. Although immune unfractionated spleen cells transferred rapid protection in all three mouse strains and immune CD4+ T cells transferred immunity in the two mouse strains studied, CD8+ T cells by themselves were neither protective nor did they enhance immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号