首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium ions have been shown to play a mojor regulatory role in the release of various hormones from a wide variety of endocrine organs. More recently, in vitro evidence suggests that a calcium-binding protein, calmodulin, is also involved in the release of many hormones. So we examined the effects of several types of calmodulin antagonists on TSH-stimulated thyroid hormone release in vitro. Mouse thyroid lobes (one thyro-tracheal unit/tube) were incubated in Krebs-Ringer bicarbonate buffer at 37 degrees C for 4h. Free thyroxine (fT4) released in the incubation medium, thyroidal cAMP and calmodulin content were measured by RIA. TSH (5 mU/ml) and dibutyryl cAMP (DBC) (200 micrograms/ml) caused a 2-4 fold increase in thyroidal release of fT4. The stimulatory effects of TSH on fT4 release were significantly inhibited by trifluoprazine and prenylamine lactate at the concentration of 5 X 10(-5) M. More specific calmodulin antagonists, W-7 and W-13, were also shown to inhibit TSH stimulation of fT4 release at the concentration of 5 X 10(-5) M. In contrast, TSH stimulation of fT4 release was not depressed by non-specific antagonists, W-5 or W-12, at the same concentration as 5 X 10(-5) M. Further, W-13 also markedly inhibited DBC-stimulated fT4 release. Neither TSH nor PGI2 altered the thyroidal calmodulin content, dissociating with a marked increase in the cAMP concentration. These results suggest that calmodulin plays an important role in TSH-stimulated thyroid hormone release and further that this mechanism exists, at least in part, at the site subsequent to the generation of cAMP.  相似文献   

2.
The TSH effect on slice and the incubation medium cyclic AMP levels and T3 and T4 released from 8 autonomously functioning thyroid nodules (AFTN) and their respective perinodular (PN) tissues were examined. The thyroid slices were incubated in Eagle's Medium containing TSH (5 to 100 mU/ml) for 60 min and 300 min for tissue cyclic AMP generation and for cyclic AMP, T3 and T4 release, respectively. Basal cyclic AMP levels were not different either in AFTN and in PN slices or into the incubation medium. In both tissues TSH produced a similar cyclic AMP generation. In contrast, cyclic AMP released into the incubation medium was significantly higher in AFTN than in PN tissues, after TSH stimulation. Basal T3 values and TSH-stimulated T3 release in AFTN were not different from PN tissue. However, basal T4 levels were significantly higher in AFTN than in PN tissue as well as T4 released in response to TSH. In addition, T3/T4 ratio was lower in AFTN than in PN tissues. The cyclic AMP released into the incubation medium correlated with both T3 and T4 release in PN tissue but in the AFTN tissue no correlations were found. These findings suggest that the adenylate cyclase-cyclic AMP system is more sensitive to TSH-stimulation in AFTN when compared with PN tissue and that AFTN tissue has a preferential T4 secretion.  相似文献   

3.
To determine whether the thyroid stimulating activity of IGG of patients with Graves' disease is associated with the reaction with a putative human thyroid antigen, the inactivation of the property of IgG to stimulate cAMP generation in human thyroid slices incubated in vitro was studied by pretreating the IgG with human thyroidal particulate fraction. In the preliminary experiment, it was demonstrated that to cause cAMP generation stimulation, on incubation period of 120 min is required to allow the IgG to penetrate the tissue. When human thyroid slices were incubated with normal IgG without or with pretreatment by human thyroid particulate fraction obtained from 100 mg tissue, cAMP content in the slices was 142 +/- 25 or 138 +/- 26 f moles/mg, respectively, indicating that basal thyroidal cAMP levels were not influenced at all by normal IgG even after pretreatment with thyroid particulate fraction. When the slices were incubated with gG of Graves' disease without or with the similar pretreatment, cAMP content was 320 +/- 31 or 140 +/- 25 f moles/mg, respectively, demonstrating an almost complete inhibition of the activity of the IgG to cause cAMP generation stimulation.  相似文献   

4.
The thyroid tissue is innervated by cholinergic and VIPergic nerves. The present study investigated the possible interactions of cholinergic agents with VIP-induced cAMP accumulation and thyroid hormone release in vitro. Carbamylcholine (Cch), acting through the muscarinic receptor increases cellular cGMP content in cultured human thyroid cells incubated with a phosphodiesterase inhibitor. Cch (10 microM) inhibits cellular cAMP accumulation and thyroxine (T4) release induced by vasoactive intestinal peptide (VIP), with or without a phosphodiesterase inhibitor. Cch (10 microM) inhibits 8-bromo-cAMP-induced T4 release from human thyroid slices. 8-Bromo-cGMP inhibits VIP-induced T4 release from human thyroid slices, only in cells incubated without the phosphodiesterase inhibitor. The results indicate that interactions between VIPergic and cholinergic receptors may be of importance in human thyroid cell.  相似文献   

5.
The comparative effects of methimazole (MMI) on resting and thyrotropin (TSH) — stimulated human thyroid cell cultures were investigated in terms of the release of iodoprotein and newly — synthesised iodothyronine hormones into the culture medium during a 48h period of incubation.Iodoprotein recovery was increased after TSH, but both basal and TSH — enhanced iodoprotein release were depressed by MMI. TSH increased the release of tri-iodothyronine (T3) and thyroxine (T4), and although the TSH — enhanced T3 and T4 levels were depressed after MMI, (i) the basal levels found in control cultures were not attained, and (ii) T3 was more susceptible than T4 to MMI suppression, at high TSH levels.These findings indicate a retention of the in vivo thyroidal sensitivity to MMI, under basal conditions and moderate TSH stimulation in vitro. The system may therefore facilitate further investigation into the mode of MMI suppression of peroxidase systems involved in iodothyronine hormone synthesis within the intact human thyroid cell.  相似文献   

6.
Forskolin (40 μM) stimulated adenylate cyclase activities of bovine thyroid plasma membranes without pthe addition of guanine nucleotides. GDP had little effect on the forskolin-stimulated adenylate cyclase activity while Gpp[NH]p (0.1–1.0 μM) decreased it. In the presence of TSH (10 mU/0.11), Gpp[NH]p no longer caused inhibition. Forskolin did not affect phosphodiesterase activities of thyroid homogenates. Forskolin (10 μM) rapidly increased cAMP levels in bovine thyroid slices both in the absence and presence of a phosphodiesterase inhibitor. The effect of TSH (50 mU/ml) on cAMP levels was additive or greater than additive to that of forskolin. An initial 2-h incubation of slices with forskolin did not decrease their subsequent cAMP responses to either forskolin and/or TSH while similar treatment of slices with TSH induced desensitization of the cAMP response to TSH, but not to forskolin. Forskolin (10 μM) as well as TSH (50 mU/ml) activated cAMP-dependent protein kinase of slices in the absence of a phosphodiesterase inhibitor. Although forskolin activated the adenylate cyclase cAMP system, it did not stimulate iodide organification or glucose oxidation, effects which have been attributed to cAMP. In fact, forskolin inhibited these parameters and 32P incorporation into phospholipids as well as their stimulation by TSH. These results indicate that an increase in cAMP levels and cAMP-dependent protein kinase activity in thyroid slices may not necessarily reproduce the effects of TSH on the thyroid.  相似文献   

7.
The effect of suppressive treatment with thyroid hormones on thyroidal iodothyronines and T4/T3 ratio in nodular and paranodular tissues was investigated in 12 patients with nontoxic goiter. Results were compared to those from 11 nontreated patients. Continuous thyroid hormone administration produced a significant increase in thyroidal T4 and T4/T3 ratio in nodular tissues while T3 remained unchanged. In paranodular tissues a significant rise of T4/T3 ratio, an insignificant increase in T4 and a decrease in T3 were observed following the administration of thyroid hormones. The results are very similar to those obtained in paranodular tissue of autonomously functioning thyroid nodule, and are probably the consequence of suppressed TSH secretion, as TSH predominantly stimulates the synthesis of T3 and/or thyroidal T4 monodeiodination.  相似文献   

8.
Since Prostacyclin (PGI2) is a major product of arachidonic acid metabolism in the human thyroid, we have studied the effects of PGI2 on cAMP accumulation in human thyroid slices and cultured thyrocytes. In both systems, PGI2 caused a dose- and time-dependent increase of cAMP accumulation with higher potency and efficacy than PGE2. Two optically active isomers of 5,6-dihydro-PGI2, i.e. stable synthetic analogs of PGI2, had qualitatively similar effects to PGI2. The relative potency ratio between the alpha- and beta- isomer as well as their potency compared to PGI2 were substantially similar to their potency in inhibiting human platelet aggregation. In thyroid slices, PGI2 and its stable analogs had a greater effect than TSH in causing cAMP accumulation; however, in contrast to TSH, this effect was not associated with increased iodothyronine release except at maximal PGI2 concentrations. TSH had no detectable effect on thyroidal PGI2 synthesis and release. In cultured thyrocytes the effects of PGI2 and its stable analogs were considerably less than those obtained with TSH and required higher concentrations. Such a discrepancy was not found in the case of PGE2. These findings suggest the existence of a specific PGI2-responsive adenylate cyclase system in human thyroid cells other than thyrocytes, of possible physiologic significance.  相似文献   

9.
Protein kinase activity in homogenates of control thyroid slices and those incubated with thyroid-stimulating hormone (TSH) and prostaglandin EI was assayed and correlated with changes in cyclic adenosine 3':5'-monophosphate (cAMP) concentrations and binding of [3H]cAMP. Both TSH and prostaglandin E1 (25 mug/ml) increased protein kinase activity and the activity ratio (expressed as activity - cAMP to activity plus cAMP). It is unlikely that such activation reflects effects of the increased cAMP liberated at the time of homogenization. Hormone-induced activation of protein kinase persisted even after the homogenate had been diluted so that its cAMP concentration would be insufficient to achieve maximal activation of the enzyme. In contrast to the previous results of J. D. Corbin, T. R. Soderling, and C. R. Park ((1973 J. Biol. Chem. 248, 1813) using adipose tissue, homogenization of thyroid tissue in 0.5 M NaCl and chromatography using Sephadex G-100 did not seem to stabilize dissociation of protein kinase into its receptor and catalytic subunits. However, increasing amounts of NaCl in the homogenizing buffer were associated with an increase in the cAMP independence of enzyme activity. Dilution of the homogenate did not change the protein kinase activity ratio whether the homogenizing buffer contained NcCl or not. Increasing concentrations of NaF inhibited protein kinase activity. Within 1 to 3 min of incubation of thyroid slices with TSH, protein kinase activity and the activity ratio were increased significantly. This correlated quite well with increased cAMP concentrations in the slices and inhibition of [3H]cAMP binding to the homogenates. Maximal activation of the enzyme was achieved by 10 min which corresponds to the time of maximal effect on cAMP concentrations. Activation of protein kinase was achieved by 0.125 milliunit/ml of TSH and maximal effects with 0.5 to 1.25 milliunits/ml. These amounts agree well with those required for other effects of TSH. Although larger amounts of TSH produced even greater increases in cAMP concentrations this was not always associated with augmented inhibition of [3H]cAMP binding. These results are compatible with the concept that the TSH-mediated increase in cAMP is associated with activation of protein kinase in the intact cell. They also suggest that not all of the intracellular cAMP is available for activation of protein kinase.  相似文献   

10.
Regulation of thyrotropin (TSH) release by thyrotropin releasing hormone (TRH) in the anterior pituitary gland (AP) of pregnant rats was studied. The pregnant (day 7, 14, and 21) and diestrous rats were decapitated. AP was divided into 2 halves, and then incubated with Locke's solution at 37 degrees C for 30 min following a preincubation. After replacing with media, APs were incubated with Locke's solution containing 0, or 10 nM TRH for 30 min. Both basal and TRH-stimulated media were collected at the end of incubation. Medial basal hypothalamus (MBH) was incubated with Locke's medium at 37 degrees C for 30 min. Concentrations of TSH in medium and plasma samples as well as the cyclic 3':5' adenosine monophosphate (cAMP) content in APs and the levels of TRH in MBH medium were measured by radioimmunoassay. The levels of plasma TSH were higher in pregnant rats of day 21 than in diestrous rats. The spontaneous release of TSH in vitro was unaltered by pregnancy. TRH increased the release of TSH by AP, which was higher in pregnant than in diestrous rats. Maternal serum concentration of total T3 was decreased during the pregnancy. The basal release of hypothalamic TRH in vitro was greater in late pregnant rats than in diestrous rats. After TRH stimulation, the increase of the content of pituitary cAMP was greater in late pregnant rats than in diestrus animals. These results suggest that the greater secretion of TSH in pregnant rats is in part due to an increase of spontaneous release of TRH by MBH and a decrease of plasma thyroid hormones. Moreover, the higher level of plasma TSH in rats during late pregnancy is associated with the greater response of pituitary cAMP and TSH to TRH.  相似文献   

11.
The effect of the beta-adrenergic blockers L-alprenolol and DL-propranolol and of the beta-adrenergic agonist L-isoprenaline on the basal and thyrotropic hormone(TSH)-stimulated cyclic adenosine-monophosphate (cAMP) level in bovine thyroid slices was studied. The main basal cAMP level in bovine thyroid slices was 3 pmol/mg tissue. TSH stimulated cAMP production in correlation to the concentration. Maximum stimulation was achieved with a TSH concentration of 10 mU/ml. The beta-blockers DL-propranolol and L-alprenolol caused 74 and 77% inhibition of TSH-stimulated cAMP synthesis respectively. The beta-adrenergic agonist L-isoprenaline did not significantly affect either the basal or the TSH-stimulated cAMP level. The role of the beta-adrenergic receptor system in the regulation of TSH-stimulated cAMP synthesis is discussed.  相似文献   

12.
The relationship of structural polarity to functional activities was examined in cultured human thyroid follicles, which were isolated from the thyroid gland of patients with Graves' disease by collagenase treatment. Structural polarity was examined morphologically by electron microscopy, while the functional response to bovine TSH was examined by measuring intracellular cAMP accumulation and T3 release. In freshly isolated thyroid follicles, structural polarity was normal and TSH induced significant cAMP accumulation but no significant release of T3. After culture for 5 days the structural polarity of thyroid follicles became inverted in the absence of thyroid stimulators, but normal polarity was retained in the presence of TSH or dibutyryl cAMP [Bu)2 cAMP). The response to TSH of cAMP accumulation increased markedly after culture in either the presence or absence of TSH, suggesting that cAMP accumulation in response to TSH is not related to structural polarity. In contrast, thyroid follicles cultured without thyroid stimulators showed no significant T3 release in response to TSH, whereas those cultured with TSH or (Bu)2 cAMP showed significant T3 release in response to TSH. These data indicate that in cultured human thyroid follicles, the responses to TSH of cAMP accumulation and T3 release are not always correlated. Among many other explanations, the results were at least compatible with the idea that normal structural polarity is necessary for thyroid hormone release in response to TSH.  相似文献   

13.
It has been demonstrated in various types of thyroid tissue preparations that cyclic AMP (cAMP) released into the medium reflects the amount of cAMP in the cells. In the present study employing perfused dog thyroid lobes the dynamics of cAMP release were compared to those of thyroxine (T4) and triiodothyronine (T3) release. The experiments gave evidence that even the lowest concentrations of TSH which stimulate hormone release (in this study 1 microU/ml) also activate the cAMP system; the very high levels of cAMP obtained by stimulation with high concentrations of TSH (in this study 10,000 microU/ml) are not accompanied by corresponding high increases in hormone release. On the contrary the T4 and T3 release is lower than during stimulation with more moderate concentrations of TSH (100 microU/ml). Hence studies employing high concentrations of TSH and measurements of cAMP as indicator of activity of secretory processes should be interpreted very cautiously; the prolonged lag in thyroid hormone secretion observed after stimulation with low concentrations of TSH is accompanied by a corresponding lag in activation of the cAMP system. This pattern suggest that the duration of late secretory processes such as thyroglobulin pinocytosis and hydrolysis is independent of the degree of stimulation and not involved in the variations in secretion latency.  相似文献   

14.
Since Prostacyclin (PGI2) is a major product of arachidonic acid metabolism in the human thyroid, we have studied the effects of PGI2 on cAMP accumulation in human thyroid slices and cultured thyrocytes. In both systems, PGI2 caused a dose- and time-dependent increase of cAMP accumulation with higher potency and efficacy than PGE2. Two optically active isomers of 5,6-dihydro-PGI2, i.e. stable synthetic analogs of PGI2, had qualitatively similar effects to PGI2. The relative potency ratio between the α- and β- isomer as well as their potency compared to PGI2 were substantially similar to their potency in inhibiting human platelet aggregation. In thyroid slices, PGI2 and its stable analogs had a greater than TSH in causing cAMP accumulation; however, in contrast to TSH, this effect was not associated with increased iodothyronine release except at maximal PGI2 concentrations. TSH had no detectable effect on thyroidal PGI2 synthesis and release. In cultured thyrocytes the effects of PGI2 and its stable analogs were considerably less than those obtained with TSH and required higher concentrations. Such a discrepancy was not found in the case of PGE2. These findings suggest the existence of a specific PGI2-responsive adenylate cyclase system in human significance.  相似文献   

15.
Of 27 patients with ophthalmic Graves''s disease (OGD) who had been clinically euthyroid three years previously, one became clinically hyperthyroid and seven overtly hypothyroid. Improvement in eye signs was associated with a return to normal of thyroidal suppression by triiodothyronine (T3) and of the response of thyroid-stimulating hormone (TSH) to thyrotrophin-releasing hormone (TRH). Of a further 30 patients with OGD who had not been studied previously, three were overtly hypothyroid. Of the combined series, 46 patients were euthyroid, 18 (40%) of whom had an impaired or absent TSH response to TRH, and 3(6-7%) an exaggerated response. Eleven out of 37 patients (29-7%) had abnormal results in the T3 suppression test. There was a significant correlation between thyroidal suppression by T3 and the TSH response to TRH. Total serum concentrations of both T3 and thyroxine (T4) were closely correlated with T3 suppressibility and TRH responsiveness. Free T4 and T3 (fT3) concentrations were normal in all but three patients, in whom raised fT3 was accompanied by abnormal TSH responses and thyroidal suppression. The presence of normal free thyroid hormone concentrations in patients with impaired or absent TSH responses to TRH is interesting and challenges the concept that free thyroid hormones are the major controlling factors in the feedback control of TSH.  相似文献   

16.
Male rat thyroid glands were incubated for two hours in Krebs-Ringer bicarbonate buffer with different amounts of morphine and/or naloxone. Five micrograms/ml morphine produced a significant increase in the T4 concentration of incubation medium, and resulted in an accumulation of cAMP in the tissue. Naloxone did not change the T4 release but its incubation with morphine prevented the morphine-induced changes. Similarly, naloxone inhibited the morphine-induced accumulation of cAMP in the thyroid tissue.  相似文献   

17.
Triiodothyronine (T3), thyroxine (T4) and thyroid stimulating hormone (TSH) serum content was measured in mice during systemic "graft-versus-host" reaction (GVHR), using radioimmunoassay. It was demonstrated that on the 3rd day after GVHR induction the levels of these hormones did not differ from the control values. T3 and T4 concentrations and 125I absorption by thyroid gland diminished by day 10. At the same time TSH level remained unchanged. On day 24 after GVHR induction T3 and T4 content was significantly reduced, although TSH concentration exceeded the control value. 125I absorption was enhanced as compared to the value observed on day 10. The data obtained show the vigorous inhibition of thyroid gland function during systemic GVHR.  相似文献   

18.
In order to examine the hypothesis that the thyroidal responsiveness to TSH is under the influence of thyroid hormone, following the T3 injection to the mice, serum T3 concentrations and the response of thyroid tissue to a fixed dose of TSH in terms of intracellular colloid droplet formation was studied. The colloid droplets induced by TSH was significantly reduced when serum T3 was decreasing, while it was significantly increased when serum T3 was increasing. This results demonstrate for the first time the existence of short feed-back loop regulating intra-thyroidal function by circulating T3. To delineate the possible mechanism of action of T3, the thyroid gland of mouse whose serum T3 concentration was elevated by injecting 50 mug T3, was incubated with TSH in vitro. TSH-induced cyclic AMP generation was not inhibited at all but colloid droplet formation was significantly inhibited in the thyroid tissue of the animal whose serum T3 concentration was enormously high. Thus, it was demonstrated that the site at which T3 affects is beyond cylcic AMP generation but prior to endocytosis, being consistent with our previous results.  相似文献   

19.
Single injections of thyrotropin (TSH) increase serum T4 and thyroidal 32P uptake but not thyroidal 125I uptake regardless of dosage, exposure time or age. Chronic TSH exposure, with 3 or more days of injection, does increase thyroidal 125I uptake. Studies using iodine (I) supplementation indicated that the increased thyroidal radioiodine uptakes seen with chronic TSH administration were not due to an I deficiency in the thyroid resulting from high hormone release. Labeled and unlabeled experiments comparing the effects of single vs. multiple injections of TSH were used to describe the effects of TSH on hormone release, hormone production and thyroidal I uptake.  相似文献   

20.
The effect of vasoactive intestinal peptide (VIP) on the cAMP system of the thyroid and on the secretion of T4 and T3 from the follicular cells and calcitonin and somatostatin from the C-cells was studied in perfused dog thyroid lobes. Activation of the cAMP system was evaluated by measurements of the amount of cAMP released into the perfusion medium. T4, T3, calcitonin and somatostatin were measured by radioimmunoassays. 3 X 10(-6) M VIP induced increases in cAMP release and T4 and T3 secretion from the thyroid while there were no significant alterations in calcitonin and somatostatin release (n = 4). In experiments employing both of the two isolated thyroid lobes 100 microU/ml TSH gave considerably higher increases in T4 and T3 secretion than 10(-6) M VIP (n = 4). The effect of 10(-9) M VIP on T4 and T3 secretion was similar to that of 10(-6) M VIP (n = 4). 10(-10) M VIP induced a small but statistically significant increase in T4 and T3 secretion in two experiments while no effect was observed in two dogs. This high sensitivity of the follicular cells to VIP and the demonstration by others of VIP containing nerves in the thyroid suggest that VIP-ergic nerves may be involved in the regulation of thyroid hormone secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号