首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In many animals reproductive success is determined after insemination by the interaction of male and female processes. While sperm competition is reasonably well understood in some taxa, other processes, such as cryptic female choice and differential early embryo mortality resulting from genetic incompatibilities, are less well understood. The relative importance of these different factors contributing to reproductive success is difficult to assess. Here we control for male-mediated effects (which are often considerable and can mask more subtle processes) through the artificial insemination of known numbers of sperm in the domestic fowl to reveal that male reproductive success is nontransitive across females: the success of a particular male depends on the background against which his sperm compete for fertilization. Two potential processes could account for this effect: cryptic female choice (sperm choice) or differential early embryo mortality. Regardless of the mechanism, nontransitivity of male reproductive success has important evolutionary consequences, including the maintenance of variation in male fitness.  相似文献   

3.
Continuous culture is applied mainly as a research tool and much less as a production process. Fundamental bottlenecks in continuous culture are discussed to help shed light on this apparent contradiction. Based on a discussion of technical, process related, and economic/market bottlenecks it is concluded that the often mentioned productivity argument in favor of continuous processing is much too simple. The optimal choice of a process mode is determined by a full understanding of the equipment and production plant factors and of the economic/market factors. Very often the resulting choice will be the fed batch and/or the cell retention process mode which is characterized by low growth rates. Therefore more research towards product formation at low growth rates (less than 0.05 h-1) is needed.  相似文献   

4.
Two major approaches are known in the field of stochastic dynamics of intracellular biochemical networks. The first one places the focus of attention on the fact that many biochemical constituents vitally important for the network functionality may be present only in small quantities within the cell, and therefore the regulatory process is essentially discrete and prone to relatively big fluctuations. The second approach treats the regulatory process as essentially continuous. Complex pseudostochastic behavior in such processes may occur due to multistability and oscillatory motions within limit cycles. In this paper we outline the third scenario of stochasticity in the regulatory process. This scenario is only conceivable in high-dimensional highly nonlinear systems. In particular, we show that burstiness, a well-known phenomenon in the biology of gene expression, is a natural consequence of high dimensionality coupled with high nonlinearity. In mathematical terms, burstiness is associated with heavy-tailed probability distributions of stochastic processes describing the dynamics of the system. We demonstrate how the "shot" noise originates from purely deterministic behavior of the underlying dynamical system. We conclude that the limiting stochastic process may be accurately approximated by the "heavy-tailed" generalized Pareto process which is a direct mathematical expression of burstiness.  相似文献   

5.
Here we describe a detailed methodology to study the function of genes whose products function during mitosis by dsRNA-mediated interference (RNAi) in cultured cells ofDrosophila melanogaster. This procedure is particularly useful for the analysis of genes for which genetic mutations are not available or for the dissection of complicated phenotypes derived from the analysis of such mutants. With the advent of whole genome sequencing it is expected that RNAi-based screenings will be one method of choice for the identification and study of novel genes involved in particular cellular processes. In this paper we focused particularly on the procedures for the proper phenotypic analysis of cells after RNAi-mediated depletion of proteins required for mitosis, the process by which the genetic information is segregated equally between daughter cells. We use RNAi of the microtubule-associated protein MAST/Orbit as an example for the usefulness of the technique. Published: June 15, 2003  相似文献   

6.
Autophagy, pexophagy, and the Cvt pathway are processes that deliver hydrolytic enzymes and substrates to the yeast vacuole/lysosome via double-membrane cytosolic vesicles. Whereas these pathways operate under different nutritional conditions, they all employ common machinery with only a few specific factors assisting in the choice of the delivery program and the membrane source for the sequestering vesicle. We found that the YKR020w gene product is essential for Cvt vesicle formation but not for pexophagy or induction of autophagy. Autophagosomes in the ykr020wdelta mutant, however, have a reduced size. We demonstrate that Ykr020 is a subunit of the Vps fifty-three tethering complex, composed of Vps52, Vps53, and Vps54, which is required for retrograde traffic from the early endosome back to the late Golgi, and for this reason we named it Vps51. This complex participates in a fusion event together with Tlg1 and Tlg2, two SNAREs also shown to be necessary for Cvt vesicle assembly. In particular, those factors are essential to correctly target the prApe1-Cvt19-Cvt9 complex to the preautophagosomal structure, the site of Cvt vesicle formation.  相似文献   

7.
We study the large population limit of the Moran process, under the assumption of weak-selection, and for different scalings. Depending on the particular choice of scalings, we obtain a continuous model that may highlight the genetic-drift (neutral evolution) or natural selection; for one precise scaling, both effects are present. For the scalings that take the genetic-drift into account, the continuous model is given by a singular diffusion equation, together with two conservation laws that are already present at the discrete level. For scalings that take into account only natural selection, we obtain a hyperbolic singular equation that embeds the Replicator Dynamics and satisfies only one conservation law. The derivation is made in two steps: a formal one, where the candidate limit model is obtained, and a rigorous one, where convergence of the probability density is proved. Additional results on the fixation probabilities are also presented.  相似文献   

8.
This article features a new production technology for nanoparticles comprised of multicomponent polymeric complexes that are candidates for delivery vehicles of biological molecules such as proteins and drugs. Biocompatible and mostly natural polymers are fabricated into thermodynamically stable nanoparticles insoluble in water and buffered media, in the absence of organic solvents, using two types of processing: batch and continuous. Careful choice of construction materials and the superposition of several interacting principles during their production allow for the customization of the physicochemical properties of the structures. Detailed experiments in batch and continuous systems allowed time-dependent stoichiometric characterization of the production process and an understanding of fundamental assembly principles of such supramolecular structures. Continuous-flow production is shown to provide more consistent data in terms of product quality and consistency, with further possibility of process development and commercialization. The development of nanoparticles using the described methodology is expected to lead to a flexible nanoparticle drug delivery system for medical applications, which has particular bearing to the slow release of drugs, antigens (for vaccine design), and genes (for gene therapy). Several chemistries of particles are presented. Copyright John Wiley & Sons, Inc.  相似文献   

9.

Control charts, the most popular tool of statistical process control, appeared in the literature to ensure that an industrial process is operating only with natural variability, i.e., under statistical control. In the last decades, control charts have been also widely used to assess the quality of non-industrial processes, such as medicine and public health. Mainly in the last two decades, a modification of standard and advanced control charts appeared in the bibliography to improve the monitoring mainly of medical processes. This is the risk-adjusted control charts which take into consideration the varying health conditions of the patients. These charts are used to monitor certain medical processes such as surgeries, mortality, and doctors’ experience. In this paper, we have tried to present all the risk-adjusted control charts presented in the literature appropriately categorized. The risk-adjusted charts have been grouped into three categories: control charts for continuous variables, control charts for attributes (non-continuous variables), time-weighted control charts. The application of risk-adjusted control charts in practical medical processes is also discussed. This review paper highlights the value of the risk-adjusted control charts.

  相似文献   

10.
11.
Models for Bounded Systems with Continuous Dynamics   总被引:4,自引:0,他引:4  
Summary .  Models for natural nonlinear processes, such as population dynamics, have been given much attention in applied mathematics. For example, species competition has been extensively modeled by differential equations. Often, the scientist has preferred to model the underlying dynamical processes (i.e., theoretical mechanisms) in continuous time. It is of both scientific and mathematical interest to implement such models in a statistical framework to quantify uncertainty associated with the models in the presence of observations. That is, given discrete observations arising from the underlying continuous process, the unobserved process can be formally described while accounting for multiple sources of uncertainty (e.g., measurement error, model choice, and inherent stochasticity of process parameters). In addition to continuity, natural processes are often bounded; specifically, they tend to have nonnegative support. Various techniques have been implemented to accommodate nonnegative processes, but such techniques are often limited or overly compromising. This article offers an alternative to common differential modeling practices by using a bias-corrected truncated normal distribution to model the observations and latent process, both having bounded support. Parameters of an underlying continuous process are characterized in a Bayesian hierarchical context, utilizing a fourth-order Runge–Kutta approximation.  相似文献   

12.
Single-type and multitype branching processes have been used to study the dynamics of a variety of stochastic birth–death type phenomena in biology and physics. Their use in epidemiology goes back to Whittle’s study of a susceptible–infected–recovered (SIR) model in the 1950s. In the case of an SIR model, the presence of only one infectious class allows for the use of single-type branching processes. Multitype branching processes allow for multiple infectious classes and have latterly been used to study metapopulation models of disease. In this article, we develop a continuous time Markov chain (CTMC) model of infectious salmon anemia virus in two patches, two CTMC models in one patch and companion multitype branching process (MTBP) models. The CTMC models are related to deterministic models which inform the choice of parameters. The probability of extinction is computed for the CTMC via numerical methods and approximated by the MTBP in the supercritical regime. The stochastic models are treated as toy models, and the parameter choices are made to highlight regions of the parameter space where CTMC and MTBP agree or disagree, without regard to biological significance. Partial extinction events are defined and their relevance discussed. A case is made for calculating the probability of such events, noting that MTBPs are not suitable for making these calculations.  相似文献   

13.
Current industrial trends encourage the development of sustainable, environmentally friendly processes with minimal energy and material consumption. In particular, the increasing market demand in biopharmaceutical industry and the tight regulations in product quality necessitate efficient operating procedures that guarantee products of high purity. In this direction, process intensification via continuous operation paves the way for the development of novel, eco‐friendly processes, characterized by higher productivity and lower production costs. This work focuses on the development of advanced control strategies for (i) a cell culture system in a bioreactor and (ii) a semicontinuous purification process. More specifically, we consider a fed‐batch culture of GS‐NS0 cells and the semicontinuous Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) for the purification process. The controllers are designed following the PAROC framework/software platform and their capabilities are assessed in silico, against the process models. It is demonstrated that the proposed controllers efficiently manage to increase the system productivity, returning strategies that can lead to continuous, stable process operation. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:966–988, 2017  相似文献   

14.
Reciprocity is probably the most debated of the evolutionary explanations for cooperation. Part of the confusion surrounding this debate stems from a failure to note that two different processes can result in reciprocity: partner control and partner choice. We suggest that the common observation that group‐living animals direct their cooperative behaviours preferentially to those individuals from which they receive most cooperation is to be interpreted as the result of the sum of the two separate processes of partner control and partner choice. We review evidence that partner choice is the prevalent process in primates and propose explanations for this pattern. We make predictions that highlight the need for studies that separate the effects of partner control and partner choice in a broader variety of group‐living taxa.  相似文献   

15.
Degradation kinetics for the treatment of straw paper wastewater in an activated sludge process have been studied and a kinetic model has been derived for both batch and continuous experiments. These two methods are reasonably equivalent only when rather low concentrations of substrate are involved. In other cases batch and continuous results are quite different. Both models, however, show a dependence upon concentration corresponding to that which is typical of multicomponent substrate degradation. The kinetic model derived from continuous tests appears to be more suitable for designing industrial processes in that it avoids oversizing of the aeration unit.  相似文献   

16.
We studied the dynamics of lexical decisions by asking participants to categorize lexical and nonlexical stimuli and recording their mouse movements toward response buttons during the choice. In a previous report we revealed greater trajectory curvature and attraction to competitors for Low Frequency words and Pseudowords. This analysis did not clarify whether the trajectory curvature in the two conditions was due to a continuous dynamic competition between the response alternatives or if a discrete revision process (a "change of mind") took place during the choice from an initially selected response to the opposite one. To disentangle these two possibilities, here we analyse the velocity and acceleration profiles of mouse movements during the choice. Pseudowords'' peak movement velocity occurred with 100ms delay with respect to words and Letters Strings. Acceleration profile for High and Low Frequency words and Letters Strings exhibited a butterfly plot with one acceleration peak at 400ms and one deceleration peak at 650ms. Differently, Pseudowords'' acceleration profile had double positive peaks (at 400 and 600ms) followed by movement deceleration, in correspondence with changes in the decision from lexical to nonlexical response buttons. These results speak to different online processes during the categorization of Low Frequency words and Pseudowords, with a continuous competition process for the former and a discrete revision process for the latter.  相似文献   

17.
Are learning processes selection processes? This paper takes a slightly modified version of the account of selection presented in Hull et al. (Behav Brain Sci 24:511–527, 2001) and asks whether it applies to learning processes. The answer is that although some learning processes are selectional, many are not. This has consequences for teleological theories of mental content. According to these theories, mental states have content in virtue of having proper functions, and they have proper functions in virtue of being the products of selection processes. For some mental states, it is plausible that the relevant selection process is natural selection, but there are many for which it is not plausible. One response to this (due to David Papineau) is to suggest that the learning processes by which we acquire non-innate mental states are selection processes and can therefore confer proper functions on mental states. This paper considers two ways in which this response could be elaborated, and argues that neither of them succeed: the teleosemanticist cannot rely on the claim that learning processes are selection processes in order to justify the attribution of proper functions to beliefs.  相似文献   

18.
Adhesion properties of microorganisms are crucial for many essential biological processes such as sexual reproduction, tissue or substrate invasion, biofilm formation and others. Most, if not all microbial adhesion phenotypes are controlled by factors such as nutrient availability or the presence of pheromones. One particular form of controlled cellular adhesion that occurs in liquid environments is a process of asexual aggregation of cells which is also referred to as flocculation. This process has been the subject of significant scientific and biotechnological interest because of its relevance for many industrial fermentation processes. Specifically adjusted flocculation properties of industrial microorganisms could indeed lead to significant improvements in the processing of biotechnological fermentation products such as foods, biofuels and industrially produced peptides. This review briefly summarises our current scientific knowledge on the regulation of flocculation-related phenotypes, their importance for different biotechnological industries, and possible future applications for microorganisms with improved flocculation properties.  相似文献   

19.
The optimal choice o f chemotherapy regime arises in the design o f every schistosomiasis control programme. This choice is o f particular contemporary interest for two reasons. At one extreme the development of effective single-dose oral drugs such as praziquantel and oxamniquine makes mass chemotherapy a practical option. At the other extreme there has been a revival o f advocacy for some form o f selective treatment. But all developing countries that contemplate schistosomiasis control face severe budget constraints, requiring careful analysis o f the economics o f chemotherapy. In this article, Nick Prescott presents a generalized framework For resource allocation in schistosomiasis chemotherapy, demonstrating that the optimal choice o f chemotherapy regime depends critically on the level of budget constraint, the unit costs o f screening and treatment, and rates o f compliance with screening and chemotherapy-all factors which are usually neglected in the choice o f control strategy.  相似文献   

20.
The economic advantages of continuous processing of biopharmaceuticals, which include smaller equipment and faster, efficient processes, have increased interest in this technology over the past decade. Continuous processes can also improve quality assurance and enable greater controllability, consistent with the quality initiatives of the FDA. Here, we discuss different continuous multi‐column chromatography processes. Differences in the capture and polishing steps result in two different types of continuous processes that employ counter‐current column movement. Continuous‐capture processes are associated with increased productivity per cycle and decreased buffer consumption, whereas the typical purity‐yield trade‐off of classical batch chromatography can be surmounted by continuous processes for polishing applications. In the context of continuous manufacturing, different but complementary chromatographic columns or devices are typically combined to improve overall process performance and avoid unnecessary product storage. In the following, these various processes, their performances compared with batch processing and resulting product quality are discussed based on a review of the literature. Based on various examples of applications, primarily monoclonal antibody production processes, conclusions are drawn about the future of these continuous‐manufacturing technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号