首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic extracts of the sponge Aplysina fistularis (Pallas 1766) were tested for antimicrobial activity against Gram positive bacteria (Staphylococcus aureus) and Gram negative bacteria (Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa). The minimal inhibitory concentration (MIC) and toxic activity of extract were determined. Susceptibility trials of organic fractions obtained by VLC: Hexane, EtOAc and CHCl3 showed that EtOAc fraction has antibacterial activity against E. coli, while CHCl3 fraction inhibited E. coli and S. aureus growth. The later refractioning of EtOAc fraction and the biodirected assays showed that fractions F12 and F13 of EtOAc/Hex and EtOAc F14 were bioactive against Gram positive and Gram negative bacteria. Only EtOAc/MeOH Sf2 from subfractionig of EtOAc F14 produced inhibition for E. coli and S. aureus. In Sf2 EtOAc/MeOH, MIC was moderate for S. aureus (MIC > 256 g/ml). F4 CHCl3/MeOH produced a high inhibition in S. aureus (MIC = 0.125 g/ml) and for E. coli (MIC > 16 g/ml). F10 CHCl3/MeOH showed a moderate activity against S. aureus (MIC > 128 g/ml) and low activity against E. coli (MIC = 512 g/ml). F10 CHCL3/MeOH did no present toxic activity against Artemia salina. The fractiorts F4 CHCL3/MeOH and Sf2 EtOAc/MeOH were toxic for this organism when the concentration was higher than 100 microg/ml. LC50 in both cases was 548.4 and 243.4 microg/ml respectively. Secondary metabolites of medium polarity obtained from A. fistularis have a wide spectrum of anti bacterial activity. Toxicity analysis suggests that only F10 CHCL3/MeOH has potential as an antimicrobial agent for clinical use.  相似文献   

2.
Purpose of the present study was to evaluate antioxidant, antibacterial, antifungal, and antiviral activities of the petroleum ether, chloroform, ethyl acetate and methanol extracts as well as the alkaloid fraction of Lycopodium clavatum L. (LC) from Lycopodiaceae growing in Turkey. Antioxidant activity of the LC extracts was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging method at 0.2 mg/ml using microplate-reader assay. Antiviral assessment of LC extracts was evaluated towards the DNA virus Herpes simplex (HSV) and the RNA virus Parainfluenza (PI-3) using Madin-Darby Bovine Kidney (MDBK) and Vero cell lines. Antibacterial and antifungal activities of the extracts were tested against standard and isolated strains of the following bacteria; Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Acinobacter baumannii, Klebsiella pneumoniae, Staphylococcus aureus, Bacillus subtilis as well as the fungi; Candida albicans and C. parapsilosis. All of the extracts possessed noteworthy activity against ATCC strain of S. aureus (4 μg/ml), while the LC extracts showed reasonable antifungal effect. On the other hand, we found that only the chloroform extract was active against HSV (16–8 μg/ml), while petroleum ether and alkaloid extracts inhibited potently PI-3 (16–4 μg/ml and 32–4 μg/ml, respectively). However, all of the extracts had insignificant antiradical effect on DPPH. In addition, we also analyzed the content of the alkaloid fraction of the plant by capillary gas chromatography-mass spectrometry (GC-MS) and identified lycopodine as the major alkaloid.  相似文献   

3.
The purpose of the present study was to investigate the antibacterial activity of seven ethanolic extracts and three aqueous extracts from various parts (leaves, stems and flowers) of A. aroma against 163 strains of antibiotic multi-resistant bacteria. The disc diffusion assay was performed to evaluate antibacterial activity of the A. aroma crude extracts, against several Gram-positive bacteria (E. faecalis, S. aureus, coagulase-negative stahylococci, S. pyogenes, S. agalactiae, S. aureus ATCC 29213, E. faecalis ATCC 29212) and Gram-negative bacteria (E. coli., K. pneumoniae, P. mirabilis, E. cloacae, S. marcescens, M morganii, A. baumannii, P. aeruginosa, S. maltophilia, E. coli ATCC 35218, P. aeruginosa ATCC 27853, E. coli ATCC 25922). All ethanolic extracts showed activity against gram-positive bacteria. Among all obtained extracts, only leaf and flower fluid extracts showed activity against Gram-negative bacteria. Based on this bioassay, leaf fluid extracts tended to be the most potent, followed by flower fluid extracts. Minimal inhibitory concentration (MIC) values of extracts and antibiotics were comparatively determined by agar and broth dilution methods. Both extracts were active against S. aureus, coagulase-negative stahylococci, E. faecalis and E. faecium and all tested Gram-negative bacteria with MIC values from 0.067 to 0.308 mg/ml. In this study the minimal bactericidal concentration (MBC) values were identical or twice as high than the corresponding MIC for leaf extracts and four or eight times higher than MIC values for flower extracts. This may indicate a bactericidal effect. Stored extracts have similar antibacterial activity as recently obtained extracts. The A. aroma extracts of leaves and flowers may be useful as antibacterial agents against Gram- negative and Gram-positive antibiotic multi-resistant microorganisms.  相似文献   

4.
AIMS: Screening of antimicrobial activity in 25 plant species from Northern Argentina. METHODS AND RESULTS: Inhibition of microbial growth was measured by a microplate assay with an oxidation-reduction indicator (Alamar Blue). Test organisms were: Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and Enterococcus faecium. Weak inhibitory activities (MIC=0.5 mg dry matter ml(-1)) were found in methanolic extracts of Rivina humilis, Crateva tapia, Funastrum claucum and Schinopsis balansae. Stronger bacteriostatic power was detected in Vassobia breviflora (MIC=0.25 mg ml(-1) against Staphylococcus aureus, and 0.5 mg ml(-1) against Enterococcus faecium). This activity was purified five-fold by extraction with dichloromethane, and it was found equally effective against susceptible or antibiotic-resistant strains of Staph. aureus. In addition, the purified extract was synergistic with gentamicin, and it was bactericidal at 24 h, with a concentration of 0.25 mg ml(-1). CONCLUSION: There is a significant antimicrobial activity in Vassobia breviflora. SIGNIFICANCE AND IMPACT OF THE STUDY: Further studies will be required to disclose the potential importance of these findings.  相似文献   

5.
Screening of phytochemical Ephedra alte crude extract by GC–MS and HPLC analysis indicated the presence of alkaloids, tannins, flavonoids, terpenoids, and phenolic acid in the extract. The total phenolic content of E. alte methanol extract was 39.43 mg of Gallic acid eq/g, crude E. alte with 56.74, and 2.42 µg Trolox equivalent antioxidant capacity (TEAC)/g of plant extract according to DPPH and FRAP assay, respectively. The antimicrobial activity of E. alte against Staphylococcus aureus, staphylococcus epidermidis, Escherichia coli, and Klebsiellaoxytoca demonstrated a mean zone diameter of inhibition ranging from 0 to 17 mm. The MIC of the extracts ranged from 0.5 to 1.0 mg/mL. E. alte extract inhibits pepsin enzyme activity with IC50 values of 213.67 µg/ml. This study revealed that E. alte extract has pepsin enzyme inhibitory, antibacterial, antioxidant activities. The current outcomes indicate that E. alte might be employed as a natural agent for managing GERD and infectious diseases.  相似文献   

6.
Aqueous, methanol, ethyl acetate, and chloroform extracts of the root, stem, and leaf of Raphanus sativus were studied for antibacterial activity against food-borne and resistant pathogens. All extracts except the aqueous extracts had significant broad-spectrum inhibitory activity. The ethyl acetate extract of the root had the potent antibacterial activity, with a minimum inhibitory concentration (MIC) of 0.016–0.064 mg/ml and a minimum bactericidal concentration (MBC) of 0.016–0.512 mg/ml against health-damaging bacteria. This was followed by the ethyl acetate extracts of the leaf and stem with MICs of 0.064–0.256 and 0.128–0.256 mg/ml, respectively and MBCs of 0.128–2.05 and 0.256–2.05 mg/ml, respectively. The ethyl acetate extracts of the different parts of R. sativus retained their antibacterial activity after heat treatment at 100°C for 30 min, and their antibacterial activity was enhanced when pH was maintained in the acidic range. Hence this study, for the first time, demonstrated that the root, stem, and leaf of R. sativus had significant bactericidal effects against human pathogenic bacteria, justifying their traditional use as anti-infective agents in herbal medicines.  相似文献   

7.
Twelve extracts obtained from nine plants belonging to six different genera of Clusiaceae were analyzed against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus and Enterococcus faecalis) bacteria using the microdilution broth assay. Tovomita aff. longifolia, T. brasiliensis, Clusia columnaris, Garcinia madruno, Haploclathra paniculata, and Caraipa grandifolia extracts showed significant results against the bacteria. The organic extract obtained from the leaves of T. aff. longifolia showed minimal inhibitory concentration (MIC) = 70 microg/ml and minimal bactericidal concentration (MBC) = 90 microg/ml against E. faecalis and the organic extract made with the stem of C. columnaris showed MIC = 180 microg/ml and MBC = 270 microg/ml against P. aeruginosa. None of the antibacterial extracts showed lethal activity against brine shrimp nauplii. On the other hand, both aqueous and organic extracts obtained from the aerial organs of Vismia guianensis that were cytotoxic to brine shrimp nauplii did not show a significant antibacterial activity in the assay.  相似文献   

8.
In the current study, the results of antibacterial, antifungal, and antiviral activity tests of four flavonoid derivatives, scandenone (1), tiliroside (2), quercetin-3,7-O-alpha-L-dirhamnoside (3), and kaempferol-3,7-O-alpha-L-dirhamnoside (4), are presented. Antibacterial and antifungal activities of these compounds were tested against Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumoniae, Acinetobacter baumannii, Staphylococcus aureus, Bacillus subtilis, and Enterococcus faecalis, as well as the fungus Candida albicans by a micro-dilution method. On the other hand, both DNA virus Herpes simplex (HSV) and RNA virus Parainfluenza-3 (PI-3) were employed for antiviral assessment of the compounds using Madin-Darby bovine kidney and Vero cell lines. According to our data, all of the compounds tested were found to be quite active against S. aureus and E. faecalis with MIC values of 0.5 microg/ml, followed by E. coli (2 microg/ml), K. pneumoniae (4 microg/ml), A. baumannii (8 micro/g/ml), and B. subtilis (8 microg/ml), while they inhibited C. albicans at 1 microg/ml as potent as ketoconazole. However, only compound 3 displayed an antiviral effect towards PI-3 in the range of 8-32 microg/ml of inhibitory concentration for cytopathogenic effect (CPE).  相似文献   

9.
A bacterium identified as Pseudomonas fluorescence was isolated from Taxus baccata rhizosphere. Ethyl acetate extract from its culture filtrate yielded an active antimicrobial compound that was purified by TLC. The active metabolites were resolved by column chromatography on silica gel (60–120 mesh). The compound was further characterized on the basis of spectral data (UV, IR and 1HNMR), which indicated the presence of an aromatic ring and phenolic functionality. The compound showed significant antimicrobial activity against two-gram positive bacteria (B. subtilis and S. aureus), four-gram negative bacteria (E. coli, K. pneumoniae, S. flexneri and P. aeruginosa), and one pathogenic fungus (Candida albicans). The minimum inhibitory concentration (MIC) of the compound ranged between 75μg to 250 μg/ml.  相似文献   

10.
Thirty-nine native plant species were collected from the provinces of Chaco and Formosa, in northern Argentina, and were screened for antimicrobial activity. The plants were dried and extracted thoroughly with methanol. The dry extracts, dissolved in dimethylsulfoxide, were tested for inhibition of microbial growth via microplate assay with an oxidation-reduction dye. The test organisms were: Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and Enterococcus faecium. Inhibition of respiratory activities in some of these microbial species was produced by the extracts of Astronium balansae, Geoffroea decorticans, Peltophorum dubium, Geoffroea spinosa, Lantana balansae, Prosopis kuntzei, Prosopis ruscifolia and Bulnesia sarmientoi, with minimal inhibitory concentrations (MIC) ranging from 0.08 to 0.5 mg dry matter/ml. Further in vitro experiments measuring the growth of S. aureus in liquid culture confirmed that all of the above extracts at 2 x MIC were able to inhibit bacterial growth effectively, and that some of them (A. balansae, G. decorticans, P. dubium, G. spinosa, P. kuntzei and B. sarmientoi) were able to reduce the initial number of viable counts by at least one order of magnitude in 10 hours, indicating that these extracts should be investigated further for the possible presence of bactericidal components.  相似文献   

11.
This study evaluates the antimicrobial effects of ethanolic extract of five herbal plants; Guava (Psidium guajava), Sage (Salvia officinalis), Rhamnus (Ziziphusspina Christi), Mulberry (Morusalba L.), and Olive (Oleaeuropaea L) leaves against several microbial population representing Gram positive, Gram negative and Mollicutes; S. aureus, E. coli, Pasteurella multocida, B. cereus, Salmonella Enteritidis and M. gallisepticum using standard agar disc diffusion technique and minimal inhibitory concentration (MIC). Different extracts reveal variable results against the microorganism under study. All extracts have no antibacterial potency for Mycoplasma gallisepticum except Psidium guajava. The results of minimal inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) of the extracts against the six bacteria ranged from 625 to 5000 μg/ml. The used herbal extract could inhibit the selected microorganism under study with variable minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC).  相似文献   

12.
Various solvent extracts of the lichen Usnea ghattensis showed good antioxidant activity. A methanol extract prevented lipid peroxidation by 87% followed by 65% in Trolox at 20 μg/ml. It also showed superoxide anion scavenging activity and free radical scavenging activity 56% and 73%, respectively. The known antioxidants butylated hydroxytoluene (BHT), butylated hydroxyanisol (BHA) and quercetin at similar concentrations showed superoxide anion scavenging activity of 68, 59 and 47% and free radical scavenging activity 83, 77 and 69%, respectively. In addition, these extracts were inhibitory against Bacillus licheniformis, Bacillus megaterium, Bacillus subtilis and Staphylococcus aureus with MIC values of 5–10 μg/ml.Received after revisions 10 May 2005  相似文献   

13.
The growth of two penicillin-resistant Gram-positive bacteria, Bacillus licheniformis (749/C, penicillin G-resistant) and Staphylococcus aureus (metR 18, methicillin-resistant) and one Gram-negative strain, Escherichia coli (cloxacillin-resistant) as well as that of their wild counterparts was inhibited by the long-chain unsaturated fatty acids, linoleic, linolenic and arachidonic acid. The minimum inhibitory concentrations (MIC) of all the fatty acids were found to be 4–6 μg/ml for Staph. aureus (metR 18 & wild), 8–30 μg/ml for B. licheniformis (749/C & wild) and 70–90 μg/ml for E. coli (cloxacillin-resistant & wild). The inhibitory activity increased as the number of double bonds in the fatty acids increased. In most instances the concentrations of fatty acids required to inhibit the growth of the penicillin-resistant strains were lower than that required for their sensitive counterparts. This inhibition of growth in the presence of fatty acids may be due to an increase in permeability of the membrane as evidenced by the measurement of the leakage of 260 nm absorbing material and fluidity.  相似文献   

14.
The antibacterial activity of aqueous and methanol extracts of leaves/shoots of five salt marsh halophytes and six mangroves was studied against methicillin resistant, clinical isolates of Staphylococcus aureus. There was a clear comparability between the salt marsh halophytes and mangroves in their antibacterial action. The mangrove plants possessed higher antibacterial potency than the salt marsh halophytes. The highest activity was recorded with the methanol extract of Excoecaria agallocha followed by the methanol extracts of Aegiceras corniculatum, Lumnitzera racemosa and Ceriops decandra. The minimum inhibitory concentration (MIC) values ranged from 0.125 to 4 mg/mL and 1 to 16 mg/mL for methanol and aqueous extracts, respectively. Further separation of active principle from the potent mangrove plant will be useful for the control of drug resistant strains of S. aureus.  相似文献   

15.
This study investigated the antibacterial activity of glycolipid-rich extracts of the brown macroalga Fucus evanescens in cell culture. Accessions were collected on the Arctic coast of Ungava Bay, Nunavik, Quebec. The crude ethyl acetate extract of these accessions showed strong antibacterial activity (≥4 log(10) cfu) against Hemophilus influenzae , Legionella pneumophila , Propionibacterium acnes (ATCC and clinical isolate), and Streptococcus pyogenes at 100?μg/mL. This algal extract inhibited by 3 log(10) Clostridium difficile and methicillin-resistant Staphylococcus aureus , whereas Bacillus cereus , Escherichia coli , Klebsiella pneumoniae , and Pseudomonas aeruginosa were not significantly affected. Further investigations of the activity of a glycolipid-rich fraction, extracted with dichloromethane, against Propionibacterium acnes showed an MIC(100) of 50?μg/mL, with an inhibition of more than 99% at only 7.8?μg/mL. The main active compound, a β-d-galactosyl O-linked glycolipid, was synthesized for the bioassay and showed an MIC(100) of 50?μg/mL but lost its activity more quickly with only 50% of inhibition at 12.5?μg/mL. Therefore, the semipurified F. evanescens extract could be a good choice for future research into the development of alternative treatments for acne therapy.  相似文献   

16.
The evaluation of the activity of the aqueous and ethyl acetate extracts of the leaves of Piper regnellii was tested against gram-positive and gram-negative bacteria. The aqueous extract displayed a weak activity against Staphylococcus aureus and Bacillus subtilis with minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of 1000 micrograms/ml. The ethyl acetate extract presented a good activity against S. aureus and B. subtilis with MIC and MBC at 15.62 micrograms/ml. In contrast to the relative low MICs for gram-positive bacteria, gram-negative bacteria were not inhibited by the extracts at concentrations < or = 1000 mg/ml. The ethyl acetate extract was fractionated on silica gel into nine fractions. The hexane and chloroform fractions were active against S. aureus (MIC at 3.9 micrograms/ml) and B. subtilis (MIC at 3.9 and 7.8 micrograms/ml, respectively). Using bioactivity-directed fractionation, the hexane fraction was rechromatographed to yield the antimicrobial compounds 1, 2, 5, and 6 identified as eupomatenoid-6, eupomatenoid-5, eupomatenoid-3, and conocarpan, respectively. The pure compounds 1 and 2 showed a good activity against S. aureus with MIC of 1.56 micrograms/ml and 3.12 micrograms/ml, respectively. Both compounds presented MIC of 3.12 micrograms/ml against B. subtilis. The pure compound 6 named as conocarpan was quite active against S. aureus and B. subtilis with MIC of 6.25 micrograms/ml. The antibacterial properties of P. regnellii justify its use in traditional medicine for the treatment of wounds, contaminated through bacteria infections.  相似文献   

17.
A new series of N-(2-hydroxy-4(or 5)-nitro/aminophenyl)benzamide and phenylacetamide derivatives (1a-1n, 2a-2n) were synthesized and evaluated for antibacterial and antifungal activities against Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, Candida albicans, and their drug-resistant isolate. Microbiological results indicated that the compounds possessed a broad spectrum of activity against the tested microorganisms at MIC values between 500 and 1.95 microg/ml. Benzamide derivative 1d exhibited the greatest activity with MIC values of 1.95, 3.9, and 7.8 microg/ml against drug-resistant B. subtilis, B. subtilis, and S. aureus, respectively.  相似文献   

18.
The major l-amino acid oxidase (LAAO, EC 1.4.3.2) of king cobra (Ophiophagus hannah) venom is known to be an unusual form of snake venom LAAO as it possesses unique structural features and unusual thermal stability. The antibacterial effects of king cobra venom LAAO were tested against several strains of clinical isolates including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli using broth microdilution assay. For comparison, the antibacterial effects of several antibiotics (cefotaxime, kanamycin, tetracycline, vancomycin and penicillin) were also examined using the same conditions. King cobra venom LAAO was very effective in inhibiting the two Gram-positive bacteria (S. aureus and S. epidermidis) tested, with minimum inhibitory concentration (MIC) of 0.78μg/mL (0.006μM) and 1.56μg/mL (0.012μM) against S. aureus and S. epidermidis, respectively. The MICs are comparable to the MICs of the antibiotics tested, on a weight basis. However, the LAAO was only moderately effective against three Gram-negative bacteria tested (P. aeruginosa, K. pneumoniae and E. coli), with MIC ranges from 25 to 50μg/mL (0.2-0.4μM). Catalase at the concentration of 1mg/mL abolished the antibacterial effect of LAAO, indicating that the antibacterial effect of the enzyme involves generation of hydrogen peroxide. Binding studies indicated that king cobra venom LAAO binds strongly to the Gram-positive S. aureus and S. epidermidis, but less strongly to the Gram-negative E. coli and P. aeruginosa, indicating that specific binding to bacteria is important for the potent antibacterial activity of the enzyme.  相似文献   

19.
The antibacterial activity of the methanolic extract and its fractions of aerial parts of Aniheinis tinctoria (Asteraceae) was investigated against representative gram-positive Staphylococcus aureus (ATCC 25923) and Enterococcus faecalis (ATCC 29212) and gram-negative strains Escherichia coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 27853). The activity was concentrated mainly in the dichloromethane (DCM) and hexane fractions of crude methanolic extract. The 5 mg of DCM extract per disk produced 15-16 mm of inhibition zone against S. aureus and P. aeruginosa, however, no activity was found against E. faecalis and E. coli. The hexane fraction showed activity against S. aureus, P. aeruginosa and E. faecalis. As DCM fraction showed the highest antibacterial activity in the disk diffusion assay, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of only this fraction was determined against S. aureus and P. aeruginosa. These values were found to be in the range of 1.25 to 10 mg/ml.  相似文献   

20.
The in vitro anti-platelet and antioxidant activities of various solvent extracts from Phellinus gilvus (PG), and the effects of hot water extract from PG (PGW) on murine cellular immunity were investigated. Chloroform extract (CE), methanol extract (ME) and butanol extract (BE) from PG could significantly inhibit platelet aggregation induced by thrombin. Ethyl acetate extract (EAE), BE, ME from PG had significant 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity compared with the control, and the EAE showed the highest effect with IC50 values of 13.34 μg/ml, which is higher than that of ascorbic acid (40 μg/ml). In addition, EAE displayed the inhibition of xanthine oxidase (XO) activity with IC50 value of 2.45 μg/ml. As to the cellular immunity activity, PGW could enhance both the lipopolysaccharide (LPS)-induced B lymphocyte proliferation and concanavalin A (Con A)-induced T lymphocyte proliferation in vitro. The phagocytosis of both peritoneal macrophages and RAW264.7 macrophage cells were also increased by the addition of PGW. Moreover, PGW was found to inhibit the nitric oxide (NO) production of RAW264.7 macrophages induced by LPS in a concentration-dependant manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号