首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose-6-phosphate dehydrogenase (G6PD; E.C.1.1.1.49) deficiency is the most common human enzymopathy; more than 300 different biochemical variants of the enzyme have been described. In many parts of the world the Mediterranean type of G6PD deficiency is prevalent. However, G6PD Mediterranean has come to be regarded as a generic term applied to similar G6PD mutations thought, however, to represent a somewhat heterogeneous group. A C----T mutation at nucleotide 563 of G6PD Mediterranean has been identified by Vulliamy et al., and the same mutation has been found by De Vita et al. in G6PD Mediterranean, G6PD Sassari, and G6PD Cagliari. The latter subjects had an additional mutation, at nucleotide 1311, that did not produce a coding change. We have examined genomic DNA of five patients--four of Spanish origin and one of Jewish origin--having enzymatically documented G6PD Mediterranean. All had both the mutation at nucleotide 563 and that at nucleotide 1311. A sixth sample, resembling G6PD Mediterranean kinetically but with a slightly rapid electrophoretic mobility, was designated G6PD Andalus and was found to have a different mutation, a G----A transition at nucleotide 1361, producing an arginine-to-histidine substitution. These studies suggest that G6PD Mediterranean is, after all, relatively homogeneous.  相似文献   

2.
Summary Glucose-6-phosphate dehydrogenase (G6PD) deficiency was found in 3.2% of the male population living in the urban area of Algiers. The deficient subjects originated from multiple geographic regions of Northern Algeria, with prevalence of individuals of Berber-Kabyle origin. Red blood cell G6PD was partially purified and characterized in deficient males from 17 families, and six different variants were found. Among them, only one, the Gd(-) Kabyle variant, had been previously described. It was detected in nine families. The other five variants were new: Gd(-) Laghouat (four cases), Gd(-) Blida (one case), Gd(-) Thenia (one case), Gd(-) Titteri (one case), and Gd(-) Alger (two brothers), Strikingly, the common Mediterranean variant was not found. G6PD deficiency is heterogeneous in northern Algeria where autochtonous variants seem to prevail. The Kabyle variant may be common in this country.  相似文献   

3.
For gadolinium chelates, we determined that there is a linear correlation between calculated solvent-accessible surface area and q-value, the number of rapidly exchanging water molecules directly bound to the gadolinium ion. A calibration curve was developed to predict q-value based on the solvent-accessible surface area of gadolinium. This predictive method was validated with the following gadolinium crystal structures: (ethylenediaminetetraacetic acid)-gadolinium(III) [Gd(EDTA)] [Templeton, L. K., Templeton, D. H., Zalkin, A., and Ruben, H. W. (1982) Anomalous Scattering by Praseodymium, Samarium, and Gadolinium and Structures of their Thylenediaminetetraacetate (EDTA) Salts. Acta Crystallogr., Sect. B 38, 2155], (1,4,7,10-tetraazacyclododecane-N,N',N' ',N' "-tetraacetic acid)-gadolinium(III) [Gd(DOTA)] [Dubost, J.-P., Leger, J.-M., Langlois, M.-H., Meyer, D., and Schaefer, M. (1991) Structure of a Magnetic Resonance Imaging Agent - The Gadolinium-DOTA Complex C(16)H(24)N(4)O(8)NaGd, 5H(2)O. C. R. Acad. Sci., Ser. 2 312, 349], (diethylenetriaminepentaacetic acid)-gadolinium(III) [Gd(DTPA)] [Stezowski, J. J., and Hoard, J. L. (1984) Heavy Metal Ionophores - Correlations Among Structural Parameters of Complexed Nonpeptide Polyamino Acids. Isr. J. Chem. 24, 323], (diethylenepenta-acetato)-gadolinium(III) [Gd(DTPA-BEA)] [Smith, P. H., Brainard, J. R., Morris, D. E., Jarvinen, G. D., and Ryan, R. R. (1989) Solution and Solid-State Characterization of Europium and Gadolinium Schiff-Base Complexes and Assessment of their Potential as Contrast Agents in Magnetic Resonance Imaging. J. Am. Chem. Soc. 111, 7437], and (1,7,13-triaza-4,10, 16-trioxacyclo-octadecane-N,N',N' '-triacetato)-gadolinium(III) [Gd(TTTA)] [Chen, D., Squattrito, P. J., Martell, A. E., and Clearfield, A. (1990) Synthesis and Crystal Structure of a 9-Coordinate Gadolinium(III) Complex of 1,7,13-Triaza-4,10, 16-Trioxacyclooctadecane-N,N',N' '-Tri-Acetic Acid. Inorg. Chem. 29, 4366]. Predicted q-values were in complete agreement with experimentally determined q-values. A genetic algorithm-based conformational search method was developed to generate valid 3D models for gadolinium chelates. The method was successfully tested on the following gadolinium chelates: Gd(EDTA) (Templeton et al., 1982), Gd(DOTA) (Dubost et al., 1991), Gd(DTPA-BEA) (Smith et al., 1989), Gd(TTTA) (Chen et al., 1990), Gd(triethylene glycol) [Rogers, R. D., Voss, E. J., and Etzenhouser, R. D. (1988) F-Element Crown Ether Complexes. 17. Synthetic and Structural Survey of Lanthanide Chloride Tiethylene Glycol Complexes. Inorg. Chem. 27, 533], and Gd(tetraethylene glycol) [Rogers, R. D., Etzenhouser, R. D., Murdoch, J. S., and Reyes, E. (1991) Macrocycle Complexation Chemistry. 35. Survey of the Complexation of the Open-Chain 15-Crown-5 Analogue tetraethylene Glycol with the Lanthanide Chlorides. Inorg. Chem. 30, 1445].  相似文献   

4.
Summary A total of 3000 men living in Yamaguchi were screened for glucose-6-phosphate dehydrogenase (G6PD) deficiency using Beutler's spot test and three types of starch gel electrophoresis. These electrophoresis used a phosphate buffer system at pH 7.0, a TRIS-EDTA-borate buffer system at pH 8.6, and a TRIS-hydrochloride buffer system at pH 8.8. Fifteen G6PD-deficient variants were found at the rate of 0.5% and classified into four groups. As new variants, G6PD Konan, Kamiube, and Kiwa were identified. These three variants had a mild to moderate G6PD deficiency and were not associated with any clinical signs. G6PD Konan had fast electrophoretic mobility as compared with normal levels, G6PD Kiwa had slightly elevated electrophoretic mobility, and G6PD Kamiube had normal electrophoretic mobility. These three variants had normal levels of Km G6P, Km NADP, and Ki NADPH, normal utilizations of both 2-deoxy-G6P and deamino-NAPD, normal heat stability, and a normal pH curve. The other variant was G6PD Ube, which we had previously found in Yamaguchi (Nakashima et al., 1977). One boy with G6PD Ube was Korean.  相似文献   

5.
Summary Two new G6PD variants have been found in red blood cells of the members of a French family originating from Lozere. The father is hemizygous for an electrophoretically fast variant with mild enzyme deficiency (50–60% of normal). The abnormal paternal G6PD gene is segregating in his daughter who is double heterozygous for maternal and paternal variants. This mutant enzyme, different from previously described variants is designated as Gd Lozère. The mother is heterozygous for another G6PD variant. Two sons are hemizygous for this latter mutant enzyme characterized by a moderate deficiency (25–30% of normal) and slower electrophoretic mobility with some slightly altered kinetic properties. This G6PD has been identified as Gd Trinacria like.These two abnormal enzymes are not associated with any hemolytic problem. Case reported is the first showing the segregation of two new mutant enzymes, distinct from common G6PD variants, among the members of the same family.  相似文献   

6.
Summary Erythrocyte glucose-6-phosphate dehydrogenase (G6PD) was characterized in blood samples obtained from 97 randomly selected males with enzyme deficiency from various regions of Guangdong Province, China. Nine new variants (Gd Kaiping, Gd Boluo, Gd Huiyang, Gd Gaomin, Gd Qing-Baijiang, Gd Gaozhou, Gd Huazhou, Gd Nanhai, and Gd Guangzhou) were identified. Of the 31 variants found in this province, Gd Kaiping, Gd Taiwan-Hakka, Gd Haad Yai, Gd Haad Yai-like and Gd Huiyang occurred most frequently. The frequency of each variant was calculated. The results demonstrated that the genetic heterogeneity of G6PD deficiency was high in this area.  相似文献   

7.
Summary Two males subjects are described with hitherto undescribed glucose-6-phosphate dehydrogenase (G6PD) variants. The first is of French ancestry, the second of Sicilian extraction. Each subject suffered from acute hemolytic anemia following ingestion of broad beans (Vicia fava). In both cases the hemolytic crisis occurred in a late period of life (29 and 58 years). No previous hemolytic crisis was recorded. The electrophoretic and kinetic properties of the mutant enzymes examined after purification from the red cells allowed each to be distinguished from other G6PD variants reported until now. The first variant was named Gd(-) Muret, the other Gd(-) Colomiers.  相似文献   

8.
A structural but isoelectrophoretic moderate variation of glucose-6-phosphate dehydrogenase (G6PD) activity is common among Nigerians (a black population exposed to a long-lasting intense Plasmodium falciparum malarial endemia). It had never even been searched for among Caucasoids and Mongoloids. In the present work, we attempted to ascertain whether this polymorphism exists among Caucasoids. With this purpose, two Caucasoid male populations were studied: Sardinians and Romans, who respectively did and did not experience an evolutionarily effective exposure to P. falciparum. The approach adopted here consisted in comparing the variations of G6PD activity observed between brothers who certainly received their Gd gene from the same grandparent (hence Gd genes identical by descent) with those between brothers who received it (in the Roman series) or may have received it (in the Sardinian series) from different grandparents. No evidence for common moderate G6PD activity variations segregating with the Gd gene was found either in Romans or Sardinians, who have both been studied with much larger samples and more sensitive approaches than those which detected such type of polymorphism among Nigerians. The upper 95% confidence limit of such zero estimates for the frequency of the isoelectrophoretic quantitative Gd variant alleles were about 0.04 and 0.025 for Romans and Sardinians, respectively. This is the first example of a genetic region (the Gd gene with its flanking sequences) apparently monomorphic in a major race and with several (four) polymorphic sites in another major race.  相似文献   

9.
Summary Two new glucose-6-phosphate dehydrogenase (G6PD) variants were discovered in Japan. The first, found in a 9-year-old male, was associated with chronic hemolysis and hemolytic crises after upper respiratory infections. The enzyme activity of the variant was 2.9% of normal. The patient's G6PD showed an increased utilization of substrate analogue, deamino-NADP, and thermal instability. The second variant occurred in a 7-year-old male with druginduced hemolysis. The main enzymatic characteristics were reduced enzyme activity, being 6.4% of normal, faster-thannormal anodal electrophoretic mobility, slightly high Michaelis constant for glucose-6-phosphate, thermal instability, and biphasic pH optima. Enzymatic properties of these variants allowed each to be distinguished from previously reported variants. The first variant was designated Gd (-) Gifu and the other, Gd (-) Fukuoka.  相似文献   

10.
Human blood platelets release alpha-6-fucosyltransferase during coagulation of blood or after stimulation with thrombin or other agonists that cause platelet activation (Antoniewicz et al., FEBS Lett. 244 (1989) 388-390). However, in the absence of neutrophils the thrombin-stimulated platelets release only a small fraction of alpha-6-fucosyltransferase activity (Ko?cielak et al., Acta Biochim. Polon. 42 (1995) 35-40). We show that the effect of neutrophils is reproduced by cathepsin G or (less efficiently) by elastase, the two enzymes that are released by neutrophils during coagulation of blood. We have also localized alpha-6-fucosyltransferase to membrane and alpha-granule fractions of platelets that had been disrupted by nitrogen cavitation. It is concluded that thrombin-activated neutrophils release cathepsin G and elastase that promote degranulation of platelets and hence the secretion of alpha-6-fucosyltransferase.  相似文献   

11.
Summary Evidence has previously been presented on the occurrence spontaneous variations in the electrophoretic mobility (EM) of glucose-6-phosphate dehydrogenase (G6PD E.C. 1.1.1.49) in laboratory clones of parthenogenetically reproducing Daphnia (Ruvinsky et al. 1983). The present study is concerned with a natural population of Daphnia living under the extreme conditions of shallow, dessicating pond. The number of individuals having the slow (S) variant of the EM of G6PD increased sharply during their 1.5 month life span. This increase is suggested to result from alternational variability related to activation of latent genetic material.  相似文献   

12.
Usanga EA  Ameen R 《Human heredity》2000,50(3):158-161
A total of 3,501 male subjects from six Arab countries living in Kuwait were investigated for quantitative and phenotypic distribution of red cell glucose-6-phosphate dehydrogenase (G6PD). The ethnic origins of those investigated were Kuwait, Egypt, Iran, Syria, Lebanon and Jordan. The distribution of G6PD deficiency among the different ethnic groups varied widely, ranging from 1.00% for Egyptians to 11.55% for Iranians. The activity of the normal enzyme was remarkably similar, with values ranging from 6.1 +/- 0.8 to 6.5 +/- 1.1 IU/g Hb. A low frequency of the Gd(A) allele was found in two ethnic groups, Egyptians (0.019) and Iranians (0.014). Gd(A-) was present at the very low frequency of 0.006 in another two ethnic groups, Kuwaitis and Jordanians.  相似文献   

13.
Summary A new deficient variant of glucose-6-phosphate dehydrogenase (G6PD) causing severe congenital nonspherocytic hemolytic anemia (CNSHA) is described. The variant enzyme, characterized by slow electrophoretic mobility, extreme in vivo and in vitro lability, high Km for G6P and strongly acidic pH optimum, appears to be unique, and has been designated G6PD Genova. Investigation of an obligate heterozygote using various cytochemical, biochemical and recombinant-DNA techniques showed G6PD mosaicism in the erythrocytes and leukocytes. Therefore, the presence of a disadvantageous mutation at one Gd locus did not determine selection in favor of the normal allele in the heterozygote's hemopoietic cells.  相似文献   

14.
In a survey of blood genetic markers in the Niokolonko of Eastern Senegal, three types of G6PD variants were discovered: (1) fast variants, common Negro G6PD A +; the frequency of the Gd A + gene was 0.183; (2) deficient G6PD A--, occurring with a fairly low frequency: 0.079, and (3) some individuals were carriers of a slow moving electrophoretic variant with normal activity. After purification, the analysis of kinetic parameters showed that this enzyme was closely similar to G6PD Tacoma. We proposed to label it 'G6PD Tacoma-like'. The incidence of this mutation in the whole group studied was 0.020. G6PD Tacoma-like may be common in some African tribes.  相似文献   

15.
A procedure for rapid purification to homogeneity of glucose-6-phosphate dehydrogenase (G6PD) is herein presented. Our method is not new, but represents a simplification of the method of De Flora et al. (Arch. Biochem. Biophys. 169, 362-3, 1975) which consisted of three steps: DEAE-Sephadex, phosphocellulose (P11) and affinity chromatography on 2'5' ADP-Sepharose. These authors eluted the enzyme from the P11 with phosphate and from 2'5' ADP-Sepharose with KC1 and NADP. By our method, the DEAE-Sephadex step is omitted, the G6PD is eluted from P11 with citrate and NADP, and from 2'5' ADP-Sepharose with KC1, NADP and EDTA. The elution of the enzyme from the phosphocellulose was studied in detail and the temperature effect has been described. We report here an application of this method to a rapid microscale purification starting from 3.5-4 ml of rabbit blood, which can be performed in about 8 hours and a macroscale purification starting from 180-200 ml of human blood, which takes a day and a half.  相似文献   

16.
Glucose-6-phosphate dehydrogenase (G6PD) is an ubiquitous enzyme which by determining the NADPH level has a crucial role in NADPH-mediated reductive processes in all cells (1). The structural gene for G6PD, Gd, is X-linked in mammals and on the basis of its expression in many tissues, it can be regarded as a typical "housekeeping" gene (2). Over 300 variants of the protein are known, many of which have deficient enzyme activity. Nearly 100 of these variants are polymorphic in various populations (3). The mammalian enzyme is a homodimer or a homotetramer with a subunit molecular weight of approximately 56000 daltons (4). Here we report the isolation of cDNA clones from HeLa cells, SV40-transformed human fibroblasts, human placenta and human teratocarcinoma cell lines. These clones have enabled us to sequence the entire coding region of Gd. Thus, the entire amino acid sequence of human G6PD is provided for the first time. This work is the first step for structural analysis of G6PD variants and for an understanding of the biological features of this enzyme at the molecular level.  相似文献   

17.
Acute liver toxicity is a frequent adverse event that occurs during antiretroviral therapy and was observed in 6-30% of the patients on treatment, especially in presence of HCV coinfection (Cooper et al., 2002, Maida et al., 2006, Sulkowski et al., 2000). A correlation between HCV-associated liver-fibrosis severity and the risk of HAART associated hepatoxicity has been demonstrated (Aranzabal et al., 2005, Sulkowski et al., 2004). This high liver toxicity rate might be due to increased drug exposure in patients with liver disease (Veronese et al., 2000). It has been reported that patients with chronic hepatitis C show significantly reduced CPY3A4 and CYP2D6 activity in comparison with healthy volunteers (Becquemont et al., 2002). The aim of this study was to evaluate the liver function tests in HCV-co-infected patients treated with fos-amprenavir and ritonavir.  相似文献   

18.
In a recent paper (Wenderoth et al., J Biol Chem 272: 26985–26990, 1997) we reported that the positions of the two redox regulatory cysteines identified in a plastidic G6PD isoform from potato (Solanum tuberosum L.) differ substantially from those conserved in cyanobacterial G6PDH sequences. To investigate the origin of redox regulation in G6PDH enzymes from photoautotrophic organisms, we isolated and characterized several G6PD cDNA sequences from higher plants and from a green and a red alga. Alignments of the deduced amino acid sequences showed that the cysteine residues cluster in the coenzyme-binding domain of the plastidic isoforms and are conserved at three out of six positions. Comparison of the mature proteins and the signal peptides revealed that two different plastidic G6PDH classes (P1 and P2) evolved from a common ancestral gene. The two algal sequences branch off prior to this class separation in higher plants, sharing about similar amino acid identity with either of the two plastidic G6PDH classes. The genes for cytosolic plant isoforms clearly share a common ancestor with animal and fungal G6PDH homologues, whereas the cyanobacterial isoforms branch within the eubacterial G6PDH sequences. The data suggest that cysteine-mediated redox regulation arose independently in G6PDH isoenzymes of eubacterial and eukaryotic lineages.  相似文献   

19.
山西垣曲盆地始新世轮藻植物群   总被引:2,自引:2,他引:0  
记述山西垣曲盆地河堤组任村至寨组里段轮藻化石,计11属,14种,2未定种,建立了一个地区性轮藻化石组合:Raskyellasinensis-Linyiecharadecorosa-Stephanocharaglobula组合,该组合位于中国早第三纪轮藻植物群序列中Obtusocharajianglingensis-Gyrogonaqianjiangica植物群的上部,轮藻植物群反映的地质时代始新世  相似文献   

20.
The thermodynamic stability of RNA hairpin loops has been a subject of considerable interest in the recent past (Wimberly et al., 1991). There have been experimental reports indicating that the hairpins with a C(UUCG)G loop sequence are thermodynamically very stable (Wimberly et al., 1991). We used the solution structure of GGAC(UUCG)GUCC (Cheong et al., 1990; Varani et al., 1991) as the starting conformation in our attempt to understand its thermodynamic stability. We carried out molecular dynamics/free energy simulations to understand the basis for the destabilization of the C(UUCG)G loop by mutating cytosine (C7)-->uracil. Because of the limited length of simulation and the presence of kinetic barriers (solvent intervention) to the uracil-->cytosine mutation, all of our computed free energy differences are based on multiple forward simulations. Based on these calculations we find that the cytosine-->uracil mutation in the loop destabilizes it by approximately 1.5kcal/mol relative to that of the reference state, an A-form RNA but with cytosine (C7) looped out. This is the same sign and magnitude as that observed in the thermodynamic studies carried out by Varani et al.(1991). We have carried out free energy component analysis to understand the effect of mutating the cytosine residue to uracil on the thermodynamic stability of the C(UUCG)G hairpin loops. Our calculations show that the most significant contribution to the stability is from the phosphate group linking U5 and U6, which favors the cytosine residue over uracil by about 6.0 kcal/mol. The residues U5, U6, and G8 in the loop region also contribute significantly to the stability. The contributions from the salt and solvent compensate each other, indicating the dynamic nature of interactions of the environment with the nucleic acid system and the coupling between these two components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号