首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The peptides corresponding to the four repeats found in the microtubule binding region of tau protein were synthesized and their ability for self-aggregation in presence of heparin or chondroitin sulfate was measured. Mainly, only the peptide containing the third tau repeat is able to form polymers in a high proportion. Additionally, the peptide containing the second repeat aggregates with a very low efficiency. However, when this peptide contains the mutation (P301L), described in a fronto temporal dementia, it is able to form polymers at a higher extent. Finally, it is suggested to have a role for the first and fourth tau repeats. It could be to decrease the ability of the third tau repeat for self-aggregation in the presence of heparin.  相似文献   

2.
《The Journal of cell biology》1995,130(5):1137-1147
alpha-, beta-, and gamma-tubulins are evolutionarily highly conserved members of the tubulin gene superfamily. While the abundant members, alpha- and beta-tubulins, constitute the building blocks of cellular microtubule polymers, gamma-tubulin is a low abundance protein which localized to the pericentriolar material and may play a role in microtubule assembly. To test whether gamma-tubulin mediates the nucleation of microtubule assembly in vivo, and co-assembles with alpha- and beta-tubulins into microtubules or self-assembles into macro- molecular structures, we experimentally elevated the expression of gamma-tubulin in the cell cytoplasm. In most cells, overexpression of gamma-tubulin causes a dramatic reorganization of the cellular microtubule network. Furthermore, we show that when overexpressed, gamma-tubulin causes ectopic nucleation of microtubules which are not associated with the centrosome. In a fraction of cells, gamma-tubulin self-assembles into novel tubular structures with a diameter of approximately 50 nm (named gamma-tubules). Furthermore, unlike microtubules, gamma-tubules are resistant to cold or drug induced depolymerization. These data provide evidence that gamma-tubulin can cause nucleation of microtubule assembly and can self-assemble into novel tubular structures.  相似文献   

3.
4.
Current knowledge about the determinants of beta-sheet formation has been notably improved by the structural and kinetic analysis of model peptides, by mutagenesis experiments in proteins and by the statistical analysis of the protein structure database (Protein Data Bank; PDB). In the past year, several peptides comprising natural and non-natural amino acids have been designed to fold as monomeric three-stranded beta-sheets. In all these cases, the design strategy has involved both the statistical analysis of the protein structure database and empirical information obtained in model beta-hairpin systems and in proteins. Only in one case was rotamer analysis performed to check for the compatibility of the sidechain packing. It is foreseeable that, in future designs, algorithms exploring the sequence and conformational space will be employed. For the design of small proteins (less than 30 amino acids), questions remain about the demonstration of two-state behavior, the formation of a well-defined network of mainchain hydrogen bonds and the quantification of the structured populations.  相似文献   

5.
Avila J 《FEBS letters》2000,476(1-2):89-92
Different neurological disorders, known as taupathies have been recently described. In these disorders it has been suggested that modifications in the microtubule-associated protein tau could cause neural degeneration in specific regions. Although these regions are different in the different taupathies, some common features appear to occur in all of them: abnormal hyperphosphorylation of tau and aberrant tau aggregation. These two features are commented upon in this review.  相似文献   

6.
Compartmentalization is a major prerequisite for the origin of life on earth according to Wächtershäuser “Iron-Sulfur-World”. The hypothesis is mainly based on an autocatalytic inorganic energy reproducing redox system consisting of iron and sulfur as requirement for the subsequent synthesis of complex organic structures. Here, we modified [FeFe]-hydrogenase models by means of covalent coupling to either oleic acid or the amphiphilic block copolymer polybutadiene-polyethyleneoxide (PB-PEO) and incorporated those into the membranes of vesicles composed of phospholipids (liposomes) or the unmodified amphiphilic polymer (polymersomes). We employed a [2Fe-2S] cluster as a hydrogenase model, since these structures are known to be suitable catalysts for the generation of H2 in the presence of weak acids. Successful incorporation was confirmed by spectrophotometric iron quantification and the vesicles formed were characterized by size determination (photon correlation spectroscopy (PCS)), and zeta potential as well as by cryo-transmission electron microscopy (Cryo-TEM). The modified models could be incorporated into liposomes or polymersomes up to molar proportions of 3.15% and 28%, respectively. Due to the immobilization in vesicular bilayers the [FeFe]-hydrogenase models can even exhibit catalytic action under the particular conditions of the intravesicular microenvironment. Our results suggest that the vesicular systems described may be applied as a nanoreactor for the reduction of encapsulated substances by generating hydrogen and thus as a minimal cell model.  相似文献   

7.
8.
Copper–zinc superoxide dismutase 1 (SOD1) is present in the protein aggregates deposited in motor neurons of amyotrophic lateral sclerosis (ALS) patients. ALS is a neurodegenerative disease that can be either sporadic (ca. 90 %) or familial (fALS). The most widely studied forms of fALS are caused by mutations in the sequence of SOD1. Ex mortuo SOD1 aggregates are usually found to be amorphous. In vitro SOD1, in its immature reduced and apo state, forms fibrillar aggregates. Previous literature data have suggested that a monomeric SOD1 construct, lacking loops IV and VII, (apoSODΔIV–VII), shares the same fibrillization properties of apoSOD1, both proteins having the common structural feature of the central β-barrel. In this work, we show that structural information can be obtained at a site-specific level from solid-state NMR. The residues that are sequentially assignable are found to be located at the putative nucleation site for fibrillar species formation in apoSOD, as detected by other experimental techniques.  相似文献   

9.
Processes involving self-assembly of monomeric units into organized polymeric arrays are currently the subject of much attention, particularly in the areas of nanotechnology and biomaterials. One biological example of a protein polymer with potential for self-organization is elastin. Elastin is the extracellular matrix protein that imparts the properties of extensibility and elastic recoil to large arteries, lung parenchyma, and other tissues. Tropoelastin, the approximately 70 kDa soluble monomeric form of elastin, is highly nonpolar in character, consisting essentially of 34 alternating hydrophobic and crosslinking domains. Crosslinking domains contain the lysine residues destined to form the covalent intermolecular crosslinks that stabilize the polymer. We and others have suggested that the hydrophobic domains are sites of interactions that contribute to juxtaposition of lysine residues in preparation for crosslink formation. Here, using recombinant polypeptides based on sequences in human elastin, we demonstrate that as few as three hydrophobic domains flanking two crosslinking domains are sufficient to support a self-assembly process that aligns lysines for zero-length crosslinking, resulting in formation of the crosslinks of native elastin. This process allows fabrication of a polymeric matrix with solubility and mechanical properties similar to those of native elastin.  相似文献   

10.
Molecular dynamics (MD) simulations can now predict ms-timescale folding processes of small proteins; however, this presently requires hundreds of thousands of CPU hours and is primarily applicable to short peptides with few long-range interactions. Larger and slower-folding proteins, such as many with extended β-sheet structure, would require orders of magnitude more time and computing resources. Furthermore, when the objective is to determine only which folding events are necessary and limiting, atomistic detail MD simulations can prove unnecessary. Here, we introduce the program tFolder as an efficient method for modelling the folding process of large β-sheet proteins using sequence data alone. To do so, we extend existing ensemble β-sheet prediction techniques, which permitted only a fixed anti-parallel β-barrel shape, with a method that predicts arbitrary β-strand/β-strand orientations and strand-order permutations. By accounting for all partial and final structural states, we can then model the transition from random coil to native state as a Markov process, using a master equation to simulate population dynamics of folding over time. Thus, all putative folding pathways can be energetically scored, including which transitions present the greatest barriers. Since correct folding pathway prediction is likely determined by the accuracy of contact prediction, we demonstrate the accuracy of tFolder to be comparable with state-of-the-art methods designed specifically for the contact prediction problem alone. We validate our method for dynamics prediction by applying it to the folding pathway of the well-studied Protein G. With relatively very little computation time, tFolder is able to reveal critical features of the folding pathways which were only previously observed through time-consuming MD simulations and experimental studies. Such a result greatly expands the number of proteins whose folding pathways can be studied, while the algorithmic integration of ensemble prediction with Markovian dynamics can be applied to many other problems.  相似文献   

11.
12.
While solution structures of adenine tract (A-tract) oligomers have indicated a unique bend direction equivalent to negative global roll (commonly termed "minor-groove bending"), crystallographic data have not unambiguously characterized the bend direction; nevertheless, many features are shared by all A-tract crystal and solution structures (e.g. propeller twisting, narrow minor grooves, and localized water spines). To examine the origin of bending and to relate findings to the crystallographic and solution data, we analyze molecular dynamics trajectories of two solvated A-tract dodecamers: 1D89, d(CGCGA(6)CG), and 1D98, d(CGCA(6)GCG), using a new general global bending framework for analyzing bent DNA and DNA/protein complexes. It is significant that the crystallographically-based initial structures are converted from dissimilar to similar bend directions equivalent to negative global roll, with the average helical-axis bend ranging from 10.5 degrees to 14.1 degrees. The largest bend occurs as positive roll of 12 degrees on the 5' side of the A-tracts (supporting a junction model) and is reinforced by gradual curvature at each A-tract base-pair (bp) step (supporting a wedge model). The precise magnitude of the bend is subtly sequence dependent (consistent with a curved general sequence model). The conversion to negative global roll only requires small local changes at each bp, accumulated over flexible moieties both outside and inside the A-tract. In contrast, the control sequence 1BNA, d(CGCGA(2)TTCGCG), bends marginally (only 6.9 degrees ) with no preferred direction. The molecular features that stabilize the bend direction in the A-tract dodecamers include propeller twisting of AT base-pairs, puckering differences between A and T deoxyriboses, a narrow minor groove, and a stable water spine (that extends slightly beyond the A-tract, with lifetimes approaching 0.2 ns). The sugar conformations, in particular, are proposed as important factors that support bent DNA. It is significant that all these curvature-stabilizing features are also observed in the crystallographic structures, but yield overall different bending paths, largely due to the effects of sequences outside the A-tract. These results merge structural details reported for A-tract structures by experiment and theory and lead to structural and dynamic insights into sequence-dependent DNA flexibility, as highlighted by the effect of an A-tract variant of a TATA-box element on bending and flexibility required for TBP binding.  相似文献   

13.
We have generated an antiserum to the variable domain of mouse collagen XXVII, a recently discovered novel member of the fibrillar collagen family. Collagen XXVII protein was first detectable in the mouse at embryonic day 12.5 (E12.5). By E14.5, the protein localized to cartilage, developing dermis, cornea, the inner limiting membrane of the retina, and major arteries of the heart. However, at E18.5, collagen XXVII protein was no longer apparent in most tissues and appeared restricted mainly to cartilage where expression continued into adulthood. Type XXVII collagen immunolocalized to 10-nm-thick nonstriated fibrils that were distinct from fibrils formed by the classical fibrillar collagens. The transient nature of its expression and unusual fibrillar structure suggest that collagen XXVII plays a developmental role distinct from those of the classical fibrillar collagens.  相似文献   

14.
15.
Most prions (infectious proteins) are self-propagating amyloids (filamentous protein multimers), and have been found in both mammals and fungal species. The prions [URE3] and [PSI+] of yeast are disease agents of Saccharomyces cerevisiae while [Het-s] of Podospora anserina may serve a normal cellular function. The parallel in-register beta-sheet structure shown by prion amyloids makes possible a templating action at the end of filaments which explains the faithful transmission of variant differences in these molecules. This property of self-reproduction, in turn, allows these proteins to act as de facto genes, encoding heritable information.  相似文献   

16.
D. Marsh 《Biophysical journal》1997,72(6):2710-2718
The transition moments for the amide bands from beta-sheet peptide structures generally do not exhibit axial symmetry about the director in linearly polarized Fourier transform infrared (FTIR) measurements on oriented systems. The angular dependences of the dichroic ratios of the amide bands are derived for beta-sheet structures in attenuated total reflection (ATR) and polarized transmission experiments on samples that are oriented with respect to the normal to the substrate and are randomly distributed with respect to the azimuthal angle in the plane of the orienting substrate. The orientational distributions of both the beta-strands and the beta-sheets are considered, and explicit expressions are given for the dichroic ratios of the amide I and amide II bands. The dichroic ratio of the amide II band, which is parallel polarized, can yield the orientation of the beta-strands directly, but to specify the orientations of the beta-sheets completely requires measurement of the dichroic ratios of both the amide I and amide II bands, or generally two bands with parallel and perpendicular polarizations. A random distribution in tilt of the planes of the beta-sheets does not give rise to equal dichroic ratios for bands with perpendicular and parallel polarizations, such as the amide I and amide II bands. The results are applied to previous ATR and polarized transmission FTIR measurements on a potassium channel-associated peptide, the Escherichia coli outer membrane protein OmpA, and the E. coli OmpF porin protein in oriented membranes.  相似文献   

17.
Peptide mixtures spontaneously formed micrometer-sized fibers and ribbons from aqueous solution. Hydrolyzed gliadin produced short, slightly elliptical fibers while hydrolyzed wheat gluten, a mixture of gliadin and glutenin, formed round fibers of similar size. Mixing hydrolyzed gliadin with increasing molar amounts of myoglobin or amylase resulted in longer, wider fibers that transitioned from round to rectangular cross section. Fiber size, morphology, and modulus were controlled by peptide mixture composition. Fourier transform infrared (FT-IR) spectroscopy results showed that peptides experienced α to β transitions forming an elementary cross-β peptide secondary structure, indicative of amyloids. Large fiber formation was observed to be dependent on hydrophobic packing between constituent peptides. A model was developed to show how the fiber morphology was influenced by the peptides in the mixture.  相似文献   

18.
19.
SET domain lysine methyltransferases are known to catalyze site and state-specific methylation of lysine residues in histones that is fundamental in epigenetic regulation of gene activation and silencing in eukaryotic organisms. Here we report the three-dimensional solution structure of the SET domain histone lysine methyltransferase (vSET) from Paramecium bursaria chlorella virus 1 bound to cofactor S-adenosyl-L-homocysteine and a histone H3 peptide containing mono-methylated lysine 27. The dimeric structure, mimicking an enzyme/cofactor/substrate complex, yields the structural basis of the substrate specificity and methylation multiplicity of the enzyme. Our results from mutagenesis and enzyme kinetics analyses argue that a general base mechanism is less likely for lysine methylation by SET domains; and that the only invariant active site residue tyrosine 105 in vSET facilitates methyl transfer from cofactor to the substrate lysine by aligning intermolecular interactions in the lysine access channel of the enzyme.  相似文献   

20.
Aberrant aggregation of microtubule associated protein tau is the main characteristic of different disorders known as tauopathies. Different compounds have been described to facilitate tau aberrant aggregation. In this work, we demonstrate that oxidized products of dopamine (neurotoxic dopamine quinone), a neurotransmitter involved in Parkinson's disease, promote tau polymerization. Curiously, neurons expressing dopamine (substantia nigra) show a low content of tau protein and seldom have tau aggregation in tauopathies. In non-dopaminergic neurons, quinone oxidation products may be involved in tau polymerization. These results support a link between oxidative damage and the onset of tauopathies. (Mol Cell Biochem 278: 203–212, 2005)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号