首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For the extreme thermophile Thermus thermophilus HB 8, a positive correlation was observed among the growth temperatures of the cells, the melting temperature, and the 2-thioribothymidine (s2T) content of tRNA extracted from cells grown at various temperatures [Watanabe, K., Shinma, M., Oshima, T., & Nishimura, S. (1976) Biochem. Biophys. Res. Commun. 72, 1137-1144]. On the basis of these observations, studies were carried out from which the following results were obtained. (1) Both RNase T1 and U2 digestions of tRNA gave only four fragments containing s2T or T: s2T psi CGp, s2T psi CAp, T psi CGp, and T psi CAp. For the different growth temperatures, the ratio of the content of s2T psi CGp plus s2T psi CAp to that of T psi CGp plus T psi CAp was almost the same as that of the s2Tp to Tp content reported previously. (2) The midpoint of the s2T-specific circular dichroism spectral change induced by heat was constant for all tRNAs extracted from cells grown at various temperatures, suggesting that the s2T-containing tRNAs melt at about the same temperature, which is independent of the growth temperature of cells. (3) s2T-containing tRNA was separated from the T-containing counterpart quantitatively by a specific modification of s2T with bromoaceto-2,4-dinitroanilide followed by BD-cellulose column chromatography. The molar ratio of the s2T- and T-containing tRNAs was also similar to that of s2Tp to Tp as mentioned above. These results demonstrate that T. thermophilus cells have both s2T- and T-containing tRNAs, whose relative content is controlled by the growth temperature. This phenomenon may be necessary to enable the thermophile to adapt to higher temperatures.  相似文献   

2.
3.
The effects of temperature on protein synthesis by Escherichia coli, a mesophile, and Pseudomonas fluorescens, a psychotroph, were investigated by using whole-cell and cell extract preparations. After shifts to 5 degrees C, protein was synthesized at a slowly decreasing rate for 1 h by both organisms, after which P. fluorescens synthesized protein at a new rate corresponding to its 5 degrees growth rate, in contrast to E. coli which did not synthesize protein at a measurable rate. In vitro protein-synthesizing systems using MS-2 RNA, endogenous mRNA, and purified polysomes were utilized to investigate initiation of translation at 5 degrees C. In these systems, P. fluorescens cell extracts synthesized protein at linear rates for up to 2 h at 5 degrees C, whereas E. coli cell extracts synthesized protein for only 25 min at 5 degrees C. The rates of polypeptide elongation, as tested by the incorporation of phenylalanine into polyphenylalanine by cell extract protein-synthesizing systems from both organisms, were identical over the range of 25 to 0 degrees C. The polysome profiles of E. coli whole cells shifted from 37 to 5 degrees C showed accumulation of 70S ribosomal particles and ribosomal subunits at the expense of polysomes. Similar experiements done with P. fluorescens resulted in polysome reformation at 5 degrees C. In vitro experiments demonstrated that the 70S ribosomal particles, which accumulated in E. coli at 5 degrees C, were capable of synthesizing protein in vitro in the absence of added mRNA. These in vivo and in vitro results suggest that incubation of E. coli at subminimal temperatures results in a block in initiation of translation causing polysomal runoff and the accumulation of 70S particles, some of which are 70S monosomes.  相似文献   

4.
5.
The extreme thermophile Sulfolobus sp. strain B12 exhibits an acquired thermotolerance response. Thus, survival of cells from a 70 degrees C culture at the lethal temperature of 92 degrees C was enhanced by as much as 6 orders of magnitude over a 2-h period if the culture was preheated to 88 degrees C for 60 min or longer before being exposed to the lethal temperature. In eubacteria and eucaryotes, acquired thermotolerance correlates with the induced synthesis of a dozen or so proteins known as heat shock proteins. In this Sulfolobus species, it correlates with the preferential synthesis of primarily one major protein (55 kilodaltons) and, to a much lesser extent, two minor proteins (28 and 35 kilodaltons). Since the synthesis of all other proteins was radically reduced and these proteins were apparently not degraded or exported, their relative abundance within the cell increased during the time the cells were becoming thermotolerant. They could not yet be related to known heat shock proteins. In immunoassays, they were not cross-reactive with antibodies against heat shock proteins from Escherichia coli (DnaK and GroE), which are highly conserved between eubacteria and eucaryotes. However, it appears that if acquired thermotolerance depends on the synthesis of protective proteins, then in this extremely thermophilic archaebacterium it depends primarily on one protein.  相似文献   

6.
A xylanase encoded by the xynA gene of the extreme thermophile "Caldocellum saccharolyticum" was overexpressed in Escherichia coli by cloning the gene downstream from the temperature-inducible lambda pR and pL promoters of the expression vector pJLA602. Induction of up to 55 times was obtained by growing the cells at 42 degrees C, and the xylanase made up to 20% of the whole-cell protein content. The enzyme was located in the cytoplasmic fraction in E. coli. The temperature and pH optima were determined to be 70 degrees C and pH 5.5 to 6, respectively. The xylanase was stable for at least 72 h if incubated at 60 degrees C, with half-lives of 8 to 9 h at 70 degrees C and 2 to 3 min at 80 degrees C. The enzyme had high activity on xylan and ortho-nitrophenyl beta-D-xylopyranoside and some activity on carboxymethyl cellulose and para-nitrophenyl beta-D-cellobioside. The gene was probably expressed from its own promoter in E. coli. Translation of the xylanase overproduced in E. coli seemed to initiate at a GTG codon and not at an ATG codon as previously determined.  相似文献   

7.
The ability of a temperature-sensitive (ts) mutant of reovirus, ts261-b, to synthesize virus-specific RNAs and proteins during infection at the nonpermissive temperature (37 degrees C) was investigated. The relative amounts of the mutant virus-specific single-stranded (ss) RNA''s and double-stranded (ds) RNA''s synthesized in cells at 37 degrees C were 20 to 25% as much as those synthesized in the wild-type virus-infected cells. The 10 segments of the mutant ds RNAs and the three size classes of the ss RNAs were synthesized in the usual proportions. The methylation of the mutant viral mRNA''s (ss RNAs) was not blocked at 37 degrees C in infected cells. A striking temperature-sensitive restricted function of the ts261-b mutant was expressed in the synthesis of the viral proteins. This study, which uses an in vitro protein-synthesizing system reconstituted with an endogenous polysomal fraction and a postribosomal supernatant from reovirus-infected cells, has demonstrated that the endogenous polysomes obtained from ts261-b mutant-infected cells at 37 degrees C are not active in the synthesis of the viral polypeptides of known molecular weights, and the amounts of the mutant viral polypeptides synthesized in vitro by these polysomes are 5 to 9% of those synthesized by the corresponding fraction from wild-type-infected cells. The impaired protein-synthesizing capacity of the mutant virus-specific polysomes can be restored during maintenance of the infected cells at 30 degrees C after shift-down from 37 degrees C. The in vitro synthesis of viral polypeptides of known size by the active endogenous polysomes derived from cells infected at the permissive temperature is accelerated by the addition of the postribosomal supernatant obtained from cells infected at the permissive temperature. The postribosomal supernatant from mutant-infected cells at 37 degrees C did not have a stimulatory effect, but rather, it inhibited in vitro viral protein synthesis.  相似文献   

8.
After infection of mouse L cells with mengovirus, there is a rapid inhibition of protein synthesis, a concurrent disaggregation of polysomes, and an accumulation of 80S ribosomes. These 80S ribosomes could not be chased back into polysomes under an elongation block. The infected-cell 80S-ribosome fraction contained twice as much initiator methionyl-tRNA and mRNA as the analogous fraction from uninfected cells. Since the proportion of 80S ribosomes that were resistant to pronase digestion also increased after infection, these data suggest that the accumulated 80S ribosomes may be in the form of initiation complexes. The specific protein synthetic activity of polysomal ribosomes also decreased with time of infection. However, the transit times in mock-infected and infected cells remained the same. Cell-free translation systems from infected cells reflected the decreased protein synthetic activity of intact cells. The addition of reticulocyte initiation factors to such systems failed to relieve the inhibition. Fractionation of the infected-cell lysate revealed that the ribosomes were the predominant target affected. Washing the infected-cell ribosomes with 0.5 M KCI restored their translational activity. In turn, the salt wash from infected-cell ribosomes inhibited translation in lysates from mock-infected cells. The inhibitor in the ribosomal salt wash was temperature sensitive and micrococcal nuclease resistant. A model is proposed wherein virus infection activates (or induces the synthesis of) an inhibitor that binds to ribosomes and stops translation after the formation of the 80S-ribosome initiation complex but before elongation. The presence of such an inhibitor on ribosomes could prevent them from being remobilized into polysomes in the presence of an inhibitor of polypeptide elongation.  相似文献   

9.
Membranes were prepared from four temperature range variants of Bacillus megaterium: one obligate thermophile, one facultative thermophile, one mesophile, and one facultative psychrophile, covering the temperature interval between 5 and 70 degrees C. The following changes in membrane composition were apparent with increasing growth temperatures: (i) the relative amount of iso fatty acids increased and that of anteiso acids decreased, the ratio of iso acids to anteiso acids being 0.34 at 5 degrees C and 3.95 at 70 degrees C, and the pair iso/anteiso acids thus seemed to parallel the pair saturated/unsaturated acids in their ability to regulate membrane fluidity; (ii) the relative/unsaturated acids in their ability to regulate membrane fluidity; (ii) the relative amount of long-chain acids (C16 to C18) increased fivefold over that of short-chain acids (C14 and C15) between 5 and 70 degrees C; (iii) the relative amount of phosphatidylethanolamine increased, and this phospholipid accordingly dominated in the thermophilic strains, whereas diphosphatidylglycerol was predominant in the two other strains; and (iv) the ratio of micromoles of phospholipid to milligrams of membrane protein increased three-fold between 5 and 70 degrees C. Moreover, a quantitative variation in membrane proteins was evident between the different strains. Briefly, membrane phospholipids with higher melting points and packing densities appeared to be synthesized at elevated growth temperatures.  相似文献   

10.
The secondary structure of 5-S rRNAs of Thermus aquaticus (an extreme thermophile), Bacillus stearothermophilus (a moderate thermophile) and Escherichia coli (a mesophile) was compared using thermal denaturation techniques under varying ionic conditions. At a low ionic strength (10 mM K+), the Tm of T. aquaticus 5-S RNA differed by only 1 degrees C from that of E. coli RNA and the molecule was fully denatured well below the optimum growth temperature of the thermophile. The internal Na+, K+ and Mg2+ concentrations of T. aquaticus cells were determined to be 91 mM, 130 mM and 59 mM, respectively. Under these salt conditions, T. aquaticus 5-S RNA was significantly more stable than E. coli RNA and the 5-S RNA from B. stearothermophilus was intermediate as is its optimum growth temperature. The results suggest that the thermostability of macromolecules from thermophilic organisms may be specially dependent on the internal salt concentration. Furthermore, under these salt conditions, most of the secondary structure of the RNA remained stable at the optimum growth temperatures suggesting that ribosomal RNAs of thermophilic organisms contribute more to the thermostability of the ribosome than previously thought.  相似文献   

11.
The nucleotide sequence of formylmethionine tRNA from an extreme thermophile, Thermus thermophilus HB8, was determined by a combination of classical methods using unlabeled samples to determine the sequences of the oligonucleotides of RNase T1 and RNase A digests and a rapid sequencing gel technique using 5'-32P labeled samples to determine overlapping sequences. Formylmethionine tRNA from T. thermophilus is composed of two species, tRNAf1Met and tRNAf2Met. Their nucleotide sequences are almost identical, and are also almost identical with that of E. coli tRNAfMet, except for slight modifications and replacements. Both species have modifications at three points which do not exist in E. coli tRNAfMet: 2'-O-methylation at G19, N-1-methylation at A59 and 2-thiolation at T55. Moreover U51 in E. coli tRNAfMet is replaced by C51 in both species, so that a G-C pair is formed between this C51 and G65. tRNAf2Met has a reversed G-C pair at positions 52 and 64 compared with those in tRNAf1Met and E. coli tRNAfMet. Other regions are mostly the same as those in all prokaryotic initiator tRNAs so far reported. The thermostability of these thermophile initiator tRNAs is discussed in relation to their unique modifications.  相似文献   

12.
The rate of oxygen uptake in an extreme thermophile at 70 C was three times greater than at 50 C. Cytochromes a, b, and c were present in cells grown at 50, 60, and 70 C. The content of these electron transport system elements remained relatively constant as the growth temperature was raised.  相似文献   

13.
New process for T-2 toxin production.   总被引:8,自引:7,他引:1       下载免费PDF全文
Strains of Fusarium produced high levels of T-2 toxin when cultured on certain media absorbed into vermiculite. Modified Gregory medium was nutritionally complex (2% soya meal, 0.5% corn steep liquor, 10% glucose) and, when inoculated with the appropriate fungal strain, yielded maximum T-2 toxin within 24 days of incubation at 19 degrees C. On Vogel synthetic medium N (H. J. Vogel, Microb. Genet, Bull. 13:42-43, 1956) supplemented with 5% glucose, optimal toxin levels were synthesized after incubation for 12 to 14 days at 15 degrees C. Fusarium tricinctum T-340 produced 714 and 353 mg/liter on modified Gregory medium and Vogel synthetic medium N plus 5% glucose, respectively. Improved analytical procedures were developed and involved aqueous methanol extraction, purification by liquid-liquid partitions, and gas-chromatographic quantitation.  相似文献   

14.
The effect of transformation on hexose and amino acid transport has been studied using whole cells and membrane vesicles of chicken embryo fibroblasts infected with the temperature-sensitive mutant of the Rous sarcoma virus, TS-68. In whole cells, TS-68-infected chicken embryo fibroblasts cultured at the permissive temperature (37 degrees C) had a 2-fold higher rate of 2-deoxy-D-glucose uptake than the same cells cultured at the non-permissive temperature (41 degrees C). However, both the non-transformed and transformed cells had comparable rates of alpha-aminoisobutyric acid transport. Membrane vesicles, isolated from TS-68-infected chicken embryo fibroblasts cultured at 41 degrees C or 37 degrees C, displayed carrier-mediated, intravesicular uptake of D-glucose and alpha-aminoisobutyric acid. Membrane vesicles from TS-68-infected chicken embryo fibroblasts cultured at 37 degrees C had an approx. 50% greater initial rate of stereospecific hexose uptake than the membrane vesicles from fibroblasts cultured at 41 degrees C. The two types of membrane vesicle had similar uptake rates of alpha-aminoisobutyric acid. The results of hexose and amino acid uptake by the membrane vesicles correlated well with those observed with the whole cells. Km values for stereospecific D-glucose uptake by the membrane vesicles from TS-68-infected chicken embryo fibroblasts cultured at 41 and 37 degrees C were similar, but the V value was greater for the membrane vesicles from TS-68-infected cells cultured at 37 degrees C. Cytochalasin B competitively inhibited stereospecific hexose uptake in both types of membrane vesicle. These findings suggest that the membrane vesicles retained many of the features of hexose and amino acid transport observed in whole cells, and that the increased rate of hexose transport seen in the virally-transformed chicken embryo fibroblasts was due to an increase in the number or availability of hexose carriers.  相似文献   

15.
A58, the conserved adenosine residue in the T psi C loop of tRNAs, is methylated to m1A 58 in an extreme thermophile, Thermus thermophilus HB27. The enzyme catalyzing this methyltransfer reaction was purified from the thermophle. The substrate specificity of the enzyme was investigated by using tRNA fragments. The enzyme can transfer the methyl group to the 3'-half fragment of E. coli initiator tRNA, indicating that the main recognition site of the enzyme exists in the 3' half of tRNA including the T-loop and the T-stem.  相似文献   

16.
1. D-Glyceraldehyde-3-phosphate dehydrogenase from an extreme thermophile, T. thermophilus strain HB8, was purified and crystallized. 2. The enzyme was found to possess remarkable heat stability, being slowly inactivated at 90 degrees C. 3. Basic kinetic constants and pH profile are reported. The enzyme was activated 25-fold by 90 mM NH4Cl, and also by ethanol up to 5-fold at 30 degrees C. 4. The enzyme was found to be far more resistant to urea or sodium dodecylsulfate than the rabbit enzyme. 5. The enzyme was shown to be a tetramer of molecular weight 130000--135000. Amino acid composition analysis revealed no unusual features. Circular dichroic spectra suggested that the contents of the ordered structure of the thermophile enzyme are similar to those of the rabbit enzyme. 6. The other catalytic properties of the thermophile enzyme are discussed in comparison with those of the enzymes from other sources.  相似文献   

17.
1H-NMR analyses have been made on the conformations of 2-thioribothymidine (s2T), 2-thiodeoxyribothymidine (s2dT), as well as ribothymidine (T) and deoxyribothymidine (dT). s2T and s2dT exclusively take the anti form rather than the syn form. The C3'-endo-gg form of the sugar moiety is remarkably stabilized on modification of T to s2T, but not on modification of dT to s2dT. The steric effects of the 2-thiocarbonyl group and the 2'-hydroxyl group cause the rigidity of the C3'-endo-gg form of s2T. Such rigidity of s2T probably contributes to the thermostability of 2-thiopyrimidine polyribonucleotides and extreme thermophile tRNAs.  相似文献   

18.
In the summer of 2003, a microalga strain was isolated from a massive green microalgae bloom in wastewater stabilization ponds at the treatment facility of La Paz, B.C.S., Mexico. Prevailing environmental conditions were air temperatures over 40 degrees C, water temperature of 37 degrees C, and insolation of up to 2400 micromol m2 s(-1) at midday for several hours at the water surface for four months. The microalga was identified as Chlorella sorokiniana Shih. et Krauss, based on sequencing its entire 18S rRNA gene. In a controlled photo-bioreactor, this strain can grow to high population densities in synthetic wastewater at temperatures of 40-42 degrees C and light intensity of 2500 micromol m2 s(-1) for 5h daily and efficiently remove ammonium from the wastewater under these conditions better than under normal lower temperature (28 degrees C) and lower light intensity (60 micromol m2 s(-1)). When co-immobilized with the bacterium Azospirillum brasilense that promotes growth of microalgae, the population of microalga grew faster and removed even more ammonium. Under exposure to extreme growth conditions, the quantity of four photosynthetic pigments increased in the co-immobilized cultures. This strain of microalga has potential as a wastewater treatment agent under extreme conditions of temperature and light intensity.  相似文献   

19.
During freezing, intracellular ice formation (IIF) has been correlated with loss in viability for a wide variety of biological systems. Hence, determination of IIF characteristics is essential in the development of an efficient methodology for cryopreservation. In this study, IIF characteristics of hepatocytes cultured in a collagen matrix were determined using cryomicroscopy. Four factors influenced the IIF behavior of the hepatocytes in the matrix: cooling rate, final cooling temperature, concentration of Me2SO, and time in culture prior to freezing. The maximum cumulative fraction of cells with IIF increased with increasing cooling rate. For cultured cells frozen in Dulbecco's modified Eagle's medium (DMEM), the cooling rate for which 50% of the cells formed ice (B50) was 70 degrees C/min for cells frozen after 1 day in culture and decreased to 15 degrees C/min for cells frozen after 7 days in culture. When cells were frozen in a 0.5 M Me2SO + DMEM solution, the value of B50 decreased from 70 to 50 degrees C/min for cells in culture for 1 day and from 15 to 10 degrees C/min for cells in culture for 7 days. The value of the average temperature for IIF (TIIF) for cultured cells was only slightly depressed by the addition of Me2SO when compared to the IIF behavior of other cell types. The results of this study indicate that the presence of the collagen matrix alters significantly the IIF characteristics of hepatocytes. Thus freezing studies using hepatocytes in suspension are not useful in predicting the freezing behavior of hepatocytes cultured in a collagen matrix. Furthermore, the weak effect of Me2SO on IIF characteristics implies that lower concentrations of Me2SO (0.5 M) may be just as effective in preserving viability. Finally, the value of B50 measured in this study indicates that cooling rates nearly an order of magnitude faster than those previously investigated could be used for cryopreservation of the hepatocytes in a collagen gel.  相似文献   

20.
A full length (192 amino acids) uracil-DNA glycosylase (TMUDG) has been expressed and purified from the extreme thermophile Thermotoga maritima. This protein is active up to 85 degrees C. The enzyme is product inhibited by abasic sites in DNA and weakly inhibited by uracil. TMUDG was originally cloned from an ORF which encoded a protein of 185 amino acids. This shorter protein was stable up to 70-75 degrees C and it seemed unusual that this enzyme had an optimal activity temperature below the growth temperature of the organism (80-90 degrees C). Following the publication of the complete genomic sequence of T. maritima, it was shown that the gene contains an additional seven amino acids (LYTREEL) at the N-terminal end of the protein. It is suggested that these seven residues are important in maintaining proper protein folding that results in increased temperature stability. We have also demonstrated that TMUDG can substitute for the Escherichia coli uracil-DNA glycosylase and initiate base excision repair using a closed circular DNA substrate containing a unique U:G base pair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号