首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human lysyl oxidase-like 2 (hLOXL2) is highly up-regulated in metastatic breast cancer cells and tissues and induces epithelial-to-mesenchymal transition, the first step of metastasis/invasion. hloxl2 encodes four N-terminal scavenger receptor cysteine-rich domains and the highly conserved C-terminal lysyl oxidase (LOX) catalytic domain. Here, we assessed the extent of the post-translational modifications of hLOXL2 using truncated recombinant proteins produced in Drosophila S2 cells. The recombinant proteins are soluble, in contrast to LOX, which is consistently reported to require 2–6 m urea for solubilization. The recombinant proteins also show activity in tropoelastin oxidation. After phenylhydrazine derivatization and trypsin digestion, we used mass spectrometry to identify peptides containing the derivatized lysine tyrosylquinone cross-link at Lys-653 and Tyr-689, as well as N-linked glycans at Asn-455 and Asn-644. Disruption of N-glycosylation by site-directed mutagenesis or tunicamycin treatment completely inhibited secretion so that only small quantities of inclusion bodies were detected. The N-glycosylation site at Asn-644 in the LOX catalytic domain is not conserved in human LOX (hLOX), although the LOX catalytic domain of hLOX shares ∼50% identity and ∼70% homology with hLOXL2. The catalytic domain of hLOX was not secreted from S2 cells using the same expression system. These results suggest that the N-glycan at Asn-644 of hLOXL2 enhances the solubility and stability of the LOX catalytic domain.  相似文献   

2.
The meprin A homo-oligomer is a highly glycosylated, secreted zinc metalloprotease of the astacin family and metzincin superfamily. This isoform of meprin is composed of disulfide-bonded dimers of alpha subunits that further associate to form large, secreted megadalton complexes of 10 or more subunits. The aim of this study was to determine the sites of glycan attachment and to assess their ability to affect the formation and stability of the homo-oligomer. Nine of the ten potential N-linked glycosylation sites (Asn-41, Asn-152, Asn-234, Asn-270, Asn-330, Asn-426, Asn-452, Asn-546, and Asn-553) were found to be glycosylated in recombinant mouse meprin A using chemical and enzymatic deglycosylation methods and electrospray ionization mass spectrometry. Chemical cross-linking demonstrated that carbohydrates are at or near the noncovalent subunit interface. The removal of two glycans in the protease domain at Asn-234 and Asn-270, as well as one in the tumor necrosis factor receptor-associated factor domain at Asn-452, by a deglycosidase under nondenaturing conditions decreased the chemical and thermal stability of the homo-oligomer without affecting quaternary structure. Site-directed mutagenesis demonstrated that no single glycan was essential for oligomer formation; however, the combined absence of the glycans at Asn-152 and Asn-270 in the protease domain hindered intersubunit disulfide bond formation, prevented noncovalent associations, and abolished enzymatic activity. These studies provide insights into the role of glycans in the biosynthesis, activity, and stability of this extracellular protease.  相似文献   

3.
Autotaxin or NPP2 (nucleotide pyrophosphatase/phosphodiesterase 2) is a secreted lysophospholipase-D that promotes metastasis and tumor growth by its ability to generate lysophosphatidic acid. Considerable evidence suggests that inhibitors of NPP2 can be used as a novel therapy for the treatment of cancer. Although most attention is currently directed toward the development of inhibitors of the catalytic site, we have explored whether NPP2 can also be targeted through its non-catalytic nuclease-like domain. We demonstrate here that the catalytic and nuclease-like domains are covalently linked by an essential disulfide bridge between Cys413 and Cys805. Within the nuclease-like domain, residues 829–850 are involved in the secretion of NPP2, and Lys852 is required for the expression of catalytic activity. These data show that the nuclease-like domain is crucial for catalysis by NPP2 and is a possible target to generate inhibitors.NPP2 3 or autotaxin is a secreted lysophospholipase-D that acts in a paracrine or autocrine manner. The major substrate of NPP2 is lysophosphatidylcholine, which is converted into choline and lysophosphatidic acid. The latter promotes signaling through specific G-protein-coupled receptors that stimulate cell proliferation, differentiation, and motility (1). NPP2 functions in processes as diverse as the homing of lymphocytes, blood vessel formation, and wound healing but also promotes tumorigenesis (26). The metastasis-enhancing properties of NPP2 have been attributed to its ability to promote the invasive properties of cancer cells and to stimulate angiogenesis. Importantly, NPP2 is highly expressed by various cancers including breast carcinoma (7), Hodgkin lymphoma (8), and glioblastoma multiforme (9), and this correlates with an increased metastasis and angiogenesis. Therefore, NPP2 is considered to be an attractive target for a novel anticancer therapy, in particular because it acts extracellularly, and interfering drugs thus do not need to be cell-permeable (10).NPP2 is one of the seven mammalian members of the NPP-type family of ectophosphodiesterases, belonging to the superfamily of phospho-/sulfo-coordinating metalloenzymes (11). These enzymes all have a structurally related catalytic domain and the same catalytic mechanism but show a different substrate specificity. For example, NPP1 only recognizes nucleotide substrates, whereas NPP2 preferentially hydrolyzes lysophospholipids. Interestingly, NPP1–3 share a C-terminal non-catalytic domain, commonly referred to as the nuclease-like domain (NLD) (12). The latter is related to DNA/RNA-nonspecific endonucleases but lacks key residues that are necessary for activity and is therefore believed to have a structural or regulatory role. It is not known whether the NLD acts as a positive or negative regulator of NPP activity, but swapping experiments of the NLD between NPP1 and NPP2 suggested that it harbors isoform-specific determinants for catalysis (13).To examine the therapeutic potential of NPP2, in particular for the treatment of cancer, a number of small molecule inhibitors have been developed (14, 15). However, these inhibitors are all directed against the catalytic site and may therefore also interfere with other phospho-/sulfo-coordinating metalloenzymes. We report here that the NLD is essential for the expression of catalytic activity and can be used as an alternative target to inhibit NPP2.  相似文献   

4.
Gijsbers R  Aoki J  Arai H  Bollen M 《FEBS letters》2003,538(1-3):60-64
Autotaxin (NPP2) is a tumor cell motility-stimulating factor that displays both a nucleotide pyrophosphatase/phosphodiesterase activity and a recently described lysophospholipase D activity. The hydrolysis of nucleotides is a metal-assisted reaction that occurs via a nucleotidylated threonine in the catalytic site. We show here that the catalytic site threonine and the metal-coordinating residues are also essential for the hydrolysis of lysophospholipids. In comparing the substrate specificity of NPP2 and the closely related NPP1 and NPP3, we found that only NPP2 displayed a lysophospholipase D activity, whereas NPP1 and NPP3 had a much higher nucleotide pyrophosphatase activity.  相似文献   

5.
Nucleotide pyrophosphatases/phosphodiesterases (NPPs) release nucleoside 5'-monophosphates from nucleotides and their derivatives. They exist both as membrane proteins, with an extracellular active site, and as soluble proteins in body fluids. The only well-characterized NPPs are the mammalian ecto-enzymes NPP1 (PC-1), NPP2 (autotaxin) and NPP3 (B10; gp130(RB13-6)). These are modular proteins consisting of a short N-terminal intracellular domain, a single transmembrane domain, two somatomedin-B-like domains, a catalytic domain, and a C-terminal nuclease-like domain. The catalytic domain of NPPs is conserved from prokaryotes to mammals and shows remarkable structural and catalytic similarities with the catalytic domain of other phospho-/sulfo-coordinating enzymes such as alkaline phosphatases. Hydrolysis of pyrophosphate/phosphodiester bonds by NPPs occurs via a nucleotidylated threonine. NPPs are also known to auto(de)phosphorylate this active-site threonine, a process accounted for by an intrinsic phosphatase activity, with the phosphorylated enzyme representing the catalytic intermediate of the phosphatase reaction. NPP1-3 have been implicated in various processes, including bone mineralization, signaling by insulin and by nucleotides, and the differentiation and motility of cells. While it has been established that most of these biological effects of NPPs require a functional catalytic site, their physiological substrates remain to be identified.  相似文献   

6.
Nucleotide pyrophosphatases/phosphodiesterases (NPPs) release nucleoside 5′-monophosphates from nucleotides and their derivatives. They exist both as membrane proteins, with an extracellular active site, and as soluble proteins in body fluids. The only well-characterized NPPs are the mammalian ecto-enzymes NPP1 (PC-1), NPP2 (autotaxin) and NPP3 (B10; gp130RB13-6). These are modular proteins consisting of a short N-terminal intracellular domain, a single transmembrane domain, two somatomedin-B-like domains, a catalytic domain, and a C-terminal nuclease-like domain. The catalytic domain of NPPs is conserved from prokaryotes to mammals and shows remarkable structural and catalytic similarities with the catalytic domain of other phospho-/sulfo-coordinating enzymes such as alkaline phosphatases. Hydrolysis of pyrophosphate/phosphodiester bonds by NPPs occurs via a nucleotidylated threonine. NPPs are also known to auto(de)phosphorylate this active-site threonine, a process accounted for by an intrinsic phosphatase activity, with the phosphorylated enzyme representing the catalytic intermediate of the phosphatase reaction. NPP1-3 have been implicated in various processes, including bone mineralization, signaling by insulin and by nucleotides, and the differentiation and motility of cells. While it has been established that most of these biological effects of NPPs require a functional catalytic site, their physiological substrates remain to be identified.  相似文献   

7.
Tripeptidyl-peptidase I (TPP I) is a lysosomal serine-carboxyl peptidase that sequentially removes tripeptides from polypeptides. Naturally occurring mutations in TPP I are associated with the classic late infantile neuronal ceroid lipofuscinosis. Human TPP I has five potential N-glycosylation sites at Asn residues 210, 222, 286, 313, and 443. To analyze the role of N-glycosylation in the function of the enzyme, we obliterated each N- glycosylation consensus sequence by substituting Gln for Asn, either individually or in combinations, and expressed mutated cDNAs in Chinese hamster ovary and human embryonic kidney 293 cells. Here, we demonstrate that human TPP I in vivo utilizes all five N-glycosylation sites. Elimination of one of these sites, at Asn-286, dramatically affected the folding of the enzyme. However, in contrast to other misfolded proteins that are retained in the endoplasmic reticulum, only a fraction of misfolded TPP I mutant expressed in Chinese hamster ovary cells, but not in human embryonic kidney 293 cells, was arrested in the ER, whereas its major portion was secreted. Secreted proenzyme formed non-native, interchain disulfide bridges and displayed only residual TPP I activity upon acidification. A small portion of TPP I missing Asn-286-linked glycan reached the lysosome and was processed to an active species; however, it showed low thermal and pH stability. N-Glycans at Asn-210, Asn-222, Asn-313, and Asn-443 contributed slightly to the specific activity of the enzyme and its resistance to alkaline pH-induced inactivation. Phospholabeling experiments revealed that N-glycans at Asn-210 and Asn-286 of TPP I preferentially accept a phosphomannose marker. Thus, a dual role of oligosaccharide at Asn-286 in folding and lysosomal targeting could contribute to the unusual, but cell type-dependent, fate of misfolded TPP I conformer and represent the molecular basis of the disease process in subjects with naturally occurring missense mutation at Asn-286.  相似文献   

8.
Influenza virus hemagglutinin (HA) is the viral envelope protein that mediates viral attachment to host cells and elicits membrane fusion. The HA receptor-binding specificity is a key determinant for the host range and transmissibility of influenza viruses. In human pandemics of the 20th century, the HA normally has acquired specificity for human-like receptors before widespread infection. Crystal structures of the H1 HA from the 2009 human pandemic (A/California/04/2009 [CA04]) in complex with human and avian receptor analogs reveal conserved recognition of the terminal sialic acid of the glycan ligands. However, favorable interactions beyond the sialic acid are found only for α2-6-linked glycans and are mediated by Asp190 and Asp225, which hydrogen bond with Gal-2 and GlcNAc-3. For α2-3-linked glycan receptors, no specific interactions beyond the terminal sialic acid are observed. Our structural and glycan microarray analyses, in the context of other high-resolution HA structures with α2-6- and α2-3-linked glycans, now elucidate the structural basis of receptor-binding specificity for H1 HAs in human and avian viruses and provide a structural explanation for the preference for α2-6 siaylated glycan receptors for the 2009 pandemic swine flu virus.  相似文献   

9.
E2-25K is an ubiquitin-conjugating enzyme with the ability to synthesize Lys48-linked polyubiquitin chains. E2-25K and its homologs represent the only known E2 enzymes which contain a C-terminal ubiquitin-associated (UBA) domain as well as the conserved catalytic ubiquitin-conjugating (UBC) domain. As an additional non-covalent binding surface for ubiquitin, the UBA domain must provide some functional specialization. We mapped the protein–protein interface involved in the E2-25K UBA/ubiquitin complex by solution nuclear magnetic resonance (NMR) spectroscopy and subsequently modeled the structure of the complex. Domain–domain interactions between the E2-25K catalytic UBC domain and the UBA domain do not induce significant structural changes in the UBA domain or alter the affinity of the UBA domain for ubiquitin. We determined that one of the roles of the C-terminal UBA domain, in the context of E2-25K, is to increase processivity in Lys48-linked polyubiquitin chain synthesis, possibly through increased binding to the ubiquitinated substrate. Additionally, we see evidence that the UBA domain directs specificity in polyubiquitin chain linkage.  相似文献   

10.
Mammalian AP endonuclease 1 is a pivotal enzyme of the base excision repair pathway acting on apurinic/apyrimidinic sites. Previous structural and biochemical studies showed that the conserved Asn-212 residue is important for the enzymatic activity of APE1. Here, we report a comprehensive pre-steady-state kinetic analysis of two APE1 mutants, each containing amino acid substitutions at position 212, to ascertain the role of Asn-212 in individual steps of the APE1 catalytic mechanism. We applied the stopped-flow technique for detection of conformational transitions in the mutant proteins and DNA substrates during the catalytic cycle, using fluorophores that are sensitive to the micro-environment. Our data indicate that Asn-212 substitution by Asp reduces the rate of the incision step by ∼550-fold, while Ala substitution results in ∼70,000-fold decrease. Analysis of the binding steps revealed that both mutants continued to rapidly and efficiently bind to abasic DNA containing the natural AP site or its tetrahydrofuran analogue (F). Moreover, transient kinetic analysis showed that N212A APE1 possessed a higher binding rate and a higher affinity for specific substrates compared to N212D APE1. Molecular dynamics (MD) simulation revealed a significant dislocation of the key catalytic residues of both mutant proteins relative to wild-type APE1. The analysis of the model structure of N212D APE1 provides evidence for alternate hydrogen bonding between Asn-212 and Asp-210 residues, whereas N212A possesses an extended active site pocket due to Asn removal. Taken together, these biochemical and MD simulation results indicate that Asn-212 is essential for abasic DNA incision, but is not crucial for effective recognition/binding.  相似文献   

11.
D222G mutation of the hemagglutinin (HA) is of special interest because of its close association with the enhanced virulence of 2009 pandemic influenza A (H1N1) virus through the increased binding affinity to α2,3-linked sialylated glycan receptors. However, there is still a lack of detailed understanding about the molecular mechanism of this enhanced virulence. Here, molecular dynamics simulation and binding free energy calculation were performed to explore the altered glycan receptor binding mechanism of HA upon the D222G mutation by studying the interaction of one α2,3-linked sialylglycan (sequence: SIA-GAL-NAG) with the wild type and D222G mutated HA. The binding free energy calculation based on the molecular mechanics generalized Born surface area (MM-GBSA) method indicates that the D222G mutated HA has a much stronger binding affinity with the studied α2,3-linked glycan than the wild type. This is consistent with the experimental result. The increased binding free energy of D222G mutant mainly comes from the increased energy contribution of Gln223. The structural analysis proves that the altered electrostatic potential of receptor binding domain (RBD) and the increased flexibility of 220-loop are the essential reasons leading to the increased affinity of HA to α2,3-linked sialic acid glycans. The obtained results of this study have allowed a deeper understanding of the receptor recognition mechanism and the pathogenicity of influenza virus, which will be valuable to the structure-based inhibitors design targeting influenza virus entry process.  相似文献   

12.
A recent chemical footprinting study in our laboratory suggested that region 1803–1818 might contribute to A2 domain retention in activated factor VIII (FVIIIa). This site has also been implicated to interact with activated factor IX (FIXa). Asn-1810 further comprises an N-linked glycan, which seems incompatible with a role of the amino acids 1803–1818 for FIXa or A2 domain binding. In the present study, FVIIIa stability and FIXa binding were evaluated in a FVIII-N1810C variant, and two FVIII variants in which residues 1803–1810 and 1811–1818 are replaced by the corresponding residues of factor V (FV). Enzyme kinetic studies showed that only FVIII/FV 1811–1818 has a decreased apparent binding affinity for FIXa. Flow cytometry analysis indicated that fluorescent FIXa exhibits impaired complex formation with only FVIII/FV 1811–1818 on lipospheres. Site-directed mutagenesis revealed that Phe-1816 contributes to the interaction with FIXa. To evaluate FVIIIa stability, the FVIII/FV chimeras were activated by thrombin, and the decline in cofactor function was followed over time. FVIII/FV 1803–1810 and FVIII/FV 1811–1818 but not FVIII-N1810C showed a decreased FVIIIa half-life. However, when the FVIII variants were activated in presence of FIXa, only FVIII/FV 1811–1818 demonstrated an enhanced decline in cofactor function. Surface plasmon resonance analysis revealed that the FVIII variants K1813A/K1818A, E1811A, and F1816A exhibit enhanced dissociation after activation. The results together demonstrate that the glycan at 1810 is not involved in FVIII cofactor function, and that Phe-1816 of region 1811–1818 contributes to FIXa binding. Both regions 1803–1810 and 1811–1818 contribute to FVIIIa stability.  相似文献   

13.
The N-linked glycan in immunoglobulin G is critical for the stability and function of the crystallizable fragment (Fc) region. Alteration of these protein properties upon the removal of the N-linked glycan has often been explained by the alteration of the CH2 domain orientation in the Fc region. To confirm this hypothesis, we examined the small-angle X-ray scattering (SAXS) profile of the glycosylated Fc region (gFc) and aglycosylated Fc region (aFc) in solution. Conformational characteristics of the CH2 domain orientation were validated by comparison with SAXS profiles theoretically calculated from multiple crystal structures of the Fc region with different CH2 domain orientations. The reduced chi-square values from the fitting analyses of gFc and aFc associated with the degree of openness or closure of each crystal structure, as determined from the first principal component that partially governed the variation of the CH2 domain orientation extracted by a singular value decomposition analysis. For both gFc and aFc, the best-fitted SAXS profiles corresponded to ones calculated based on the crystal structure of gFc that formed a “semi-closed” CH2 domain orientation. Collectively, the data indicated that the removal of the N-linked glycan only negligibly affected the CH2 domain orientation in solution. These findings will guide the development of methodology for the production of highly refined functional Fc variants.  相似文献   

14.
The fungal cell wall is a highly dynamic structure that is essential to maintain cell shape and stability. Hence in yeasts and fungi cell wall integrity is tightly controlled. The Saccharomyces cerevisiae plasma membrane protein Mid2p is a putative mechanosensor that responds to cell wall stresses and morphological changes during pheromone induction. The extracellular domain of Mid2p, which is crucial to sensing, is highly O- and N-glycosylated. We showed that O-mannosylation is determining stability of Mid2p. If and how N-glycosylation is linked to Mid2p function was unknown. Here we demonstrate that Mid2p contains a single high mannose N-linked glycan at position Asn-35. The N -glycan is located close to the N-terminus and is exposed from the plasma membrane towards the cell wall through a highly O-mannosylated domain that is predicted to adopt a rod-like conformation. In contrast to O-mannosylation, lack of the N-linked glycan affects neither, stability of Mid2p nor distribution at the plasma membrane during vegetative and sexual growth. However, non-N-glycosylated Mid2p fails to perceive cell wall challenges. Our data further demonstrate that both the extent of the N-linked glycan and its distance from the plasma membrane affect Mid2p function, suggesting the N -glycan to be directly involved in Mid2p sensing.  相似文献   

15.
Plant acyl-acyl carrier protein thioesterases (TEs) terminate the acyl-acyl carrier protein track of fatty acid biosynthesis and play an essential role in determining the amount and composition of fatty acids entering the storage lipid pool. A combination of bioinformatics tools was used to predict a three-dimensional model for Arabidopsis FatB (AtFatB), which comprises a fold similar to that of Escherichia coli TEII, an enzyme that is functionally similar to plant TEs but lacks significant sequence similarity and displays different inhibitor sensitivity. The catalytic residues in AtFatB, Cys-264 and His-229, localize to the same region of the model as catalytic residues found in other enzymes with helix/multi-stranded sheet motifs (hot dog folds). Based on the model, we identified Asn-227 as a possible third member of the proposed papain-like catalytic triad. The conversion of Asn-227 to Ala resulted in a loss of detectable activity (>200-fold reduction), similar to the result seen for the equivalent mutation in papain. Mapping of plant TE specificity-affecting mutations onto the structural model showed that these mutations all cluster around the catalytic triad. Also, superposition of the crystallographically determined structures of the complexes of 4-hydroxybenzoyl-CoA TE with substrate and beta-hydroxydecanoyl thiol ester dehydrase with inhibitor onto the AtFatB model showed that the substrate and inhibitor localize to the same region as the AtFatB catalytic triad in their respective structures. Together these data corroborate the structural model and show that the hot dog fold is common to enzymes from both prokaryotes and eukaryotes and that this fold supports at least three different catalytic mechanisms.  相似文献   

16.
The variant surface glycoprotein (VSG) of the ILTat 1.3 variant of Trypanosoma brucei has two asparagine-linked glycan moieties, as well as a phosphatidylinositol glycan membrane anchor. We have investigated the structure and processing of each of these oligosaccharides through analysis of the intact protein and of glycopeptides. Processing has been examined by comparing glycan structures purified from an immature intracellular form (58 kDa) of VSG with those of the mature form (59 kDa) found on the parasite surface. We find exclusively high mannose oligosaccharides (Man4-7-GlcNAc2) at Asn-432 in both the immature 58-kDa and mature 59-kDa forms. In contrast, the "core" oligosaccharide of Asn-419 (Man3-GlcNAc2) appears to be nearly quantitatively processed to a complex biantennary structure [Gal-GlcNAc-Man)2-Man-GlcNAc2) during VSG maturation. The asparagine-linked structures at Asn-419, but not those at Asn-432, are resistant to endo-beta-N-acetylglucosaminidase H within 30 s of biosynthesis. This suggests possible novel and selective mechanisms for glycosylation in African trypanosomes. Finally, we show that the carboxyl-terminal glycolipid is galactosylated (3-4 residues) relatively late in VSG biosynthesis. Phosphatidylinositol glycans have been identified on a growing number of eukaryotic membrane proteins. This report provides a direct demonstration of the processing of such a glycolipid anchor following its attachment to protein.  相似文献   

17.
Cyclooxygenases (COXs) catalyze the committed step in prostaglandin (PG) biosynthesis. COX-1 is constitutively expressed and stable, whereas COX-2 is inducible and short lived. COX-2 is degraded via endoplasmic reticulum (ER)-associated degradation (ERAD) following post-translational glycosylation of Asn-594. COX-1 and COX-2 are found in abundance on the luminal surfaces of the ER and inner membrane of the nuclear envelope. Using confocal immunocytofluorescence, we detected both COX-2 and microsomal PGE synthase-1 (mPGES-1) but not COX-1 in the Golgi apparatus. Inhibition of trafficking between the ER and Golgi retarded COX-2 ERAD. COX-2 has a C-terminal STEL sequence, which is an inefficient ER retention signal. Substituting this sequence with KDEL, a robust ER retention signal, concentrated COX-2 in the ER where it was stable and slowly glycosylated on Asn-594. Native COX-2 and a recombinant COX-2 having a Golgi targeting signal but not native COX-1 exhibited efficient catalytic coupling to mPGES-1. We conclude that N-glycosylation of Asn-594 of COX-2 occurs in the ER, leading to anterograde movement of COX-2 to the Golgi where the Asn-594-linked glycan is trimmed prior to retrograde COX-2 transport to the ER for ERAD. Having an inefficient ER retention signal leads to sluggish Golgi to ER transit of COX-2. This permits significant Golgi residence time during which COX-2 can function catalytically. Cytosolic phospholipase A, which mobilizes arachidonic acid for PG synthesis, preferentially translocates to the Golgi in response to physiologic Ca2+ mobilization. We propose that cytosolic phospholipase A, COX-2, and mPGES-1 in the Golgi comprise a dedicated system for COX-2-dependent PGE2 biosynthesis.  相似文献   

18.
As the upstream component of the ESCRT (endosomal sorting complexes required for transport) machinery, the ESCRT-0 complex is responsible for directing ubiquitinated membrane proteins to the multivesicular body pathway. ESCRT-0 is formed by two subunits known as Hrs (hepatocyte growth factor-regulated substrate) and STAM (signal transducing adaptor molecule), both of which harbor multiple ubiquitin-binding domains (UBDs). In particular, STAM2 possesses two UBDs, the VHS (Vps27/Hrs/Stam) and UIM (ubiquitin interacting motif) domains, connected by a 20-amino acid flexible linker. In the present study, we report the interactions of the UIM domain and VHS-UIM construct of STAM2 with monoubiquitin (Ub), Lys(48)- and Lys(63)-linked diubiquitins. Our results demonstrate that the UIM domain alone binds monoubiquitin, Lys(48)- and Lys(63)-linked diubiquitins with the same affinity and in the same binding mode. Interestingly, binding of VHS-UIM to Lys(63)-linked diubiquitin is not only avid, but also cooperative. We also show that the distal domain of Lys(63)-linked diubiquitin stabilizes the helical structure of the UIM domain and that the corresponding complex adopts a specific structural organization responsible for its greater affinity. In contrast, binding of VHS-UIM to Lys(48)-linked diubiquitin and monoubiquitin is not cooperative and does not show any avidity. These results may explain the better sorting efficiency of some cargoes polyubiquitinated with Lys(63)-linked chains over monoubiquitinated cargoes or those tagged with Lys(48)-linked chains.  相似文献   

19.
The glycosylation of human chorionic gonadotropin (hCG) plays an important role in reproductive tumors. Detecting hCG N-glycosylation alteration may significantly improve the diagnostic accuracy and sensitivity of related cancers. However, developing an immunoassay directly against the N-linked oligosaccharides is unlikely because of the heterogeneity and low immunogenicity of carbohydrates. Here, we report a hydrogen/deuterium exchange and MS approach to investigate the effect of N-glycosylation on the binding of antibodies against different hCG glycoforms. Hyperglycosylated hCG was purified from the urine of invasive mole patients, and the structure of its N-linked oligosaccharides was confirmed to be more branched by MS. The binding kinetics of the anti-hCG antibodies MCA329 and MCA1024 against hCG and hyperglycosylated hCG were compared using biolayer interferometry. The binding affinity of MCA1024 changed significantly in response to the alteration of hCG N-linked oligosaccharides. Hydrogen/deuterium exchange-MS reveals that the peptide β65–83 of the hCG β subunit is the epitope for MCA1024. Site-specific N-glycosylation analysis suggests that N-linked oligosaccharides at Asn-13 and Asn-30 on the β subunit affect the binding affinity of MCA1024. These results prove that some antibodies are sensitive to the structural change of N-linked oligosaccharides, whereas others are not affected by N-glycosylation. It is promising to improve glycoprotein biomarker-based cancer diagnostics by developing combined immunoassays that can determine the level of protein and measure the degree of N-glycosylation simultaneously.  相似文献   

20.
Mammalian lipoxygenases (LOXs) have been implicated in cell differentiation and in the pathogenesis of inflammatory and hyperproliferative diseases. The available structural information indicated that lipoxygenases constitute single polypeptide chain enzymes consisting of a small N-terminal β-barrel domain and a larger C-terminal subunit that harbors the catalytic non-heme iron. Because of its structural similarity to C2-domains of lipases the N-terminal β-barrel domain of lipoxygenases, which comprises about 110 amino acids, has been implicated in membrane binding and activity regulation. To explore the functional relevance of the C2-domain in more detail and to develop a more comprehensive hypothesis on the biological role of this structural subunit we performed gene technical truncation on various mammalian LOX isoforms (12/15-LOXs of various species, human 15-LOX2, mouse 5-LOX) and quantified catalytic activity and membrane binding properties of the truncated recombinant enzyme species. We found that the C2-domain is not essential for catalytic activity and does hardly impact reaction specificity. Truncated enzyme species exhibit impaired membrane binding properties and altered reaction kinetics. Taken together, our data suggests a regulatory importance of the N-terminal β-barrel domain for mammalian lipoxygenase isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号