首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate and extent of stereoselective reduction of 1,3-dioxo-2-methyl-2-(3′-oxo-6′-carbomethoxyhexyl)-cyclopentane to form the 1β-hydroxy-2β-methyl isomer by cultures of Schizosaccharomyces pombe ATCC 2476 was dramatically increased by addition to the fermentation of certain α,β-unsaturated ketones and allyl alcohol.  相似文献   

2.
1. α-3,4,5,6-Tetrachlorocyclohex-1-ene and γ-2,3,4,5,6-pentachlorocyclohex-1-ene are conjugated with glutathione in vitro by a rat-liver enzyme that is probably glutathione S-aryltransferase. 2. Chlorocyclohexane and the α-, β-, γ- and δ-isomers of hexachlorocyclohexane were not substrates for rat-liver glutathione S-aryltransferase. 3. Glutathione-S-aryltransferase activity was present in tissue preparations of houseflies of insecticide-resistant and -susceptible strains. More activity was found in a dieldrin-resistant strain of houseflies fed on dieldrin than in either a dieldrin-resistant strain not fed on dieldrin or a control strain of dieldrin-susceptible houseflies. 4. Housefly soluble supernatant preparations converted S-(2-chloro-4-nitrophenyl)glutathione into the corresponding cysteine and mercapturic acid derivatives.  相似文献   

3.
Bioconversion of α-damascone (compound 1) was studied with four strains of Botrytis cinerea in grape must (pH 3.2). As biotransformation products of compound 1, 3-oxo-α-damascone, cis- and trans-3-hydroxy-α-damascone, γ-damascenone, 3-oxo-8, 9-dihydro-α-damascone, and cis- and trans-3-hydroxy-8,9-dihydro-α-damascone were identified. In addition, acid-catalyzed chemical transformation of compound 1 to the diastereomers of 9-hydroxy-8,9-dihydro-α-damascone was observed. Identifications were performed by capillary gas chromatography (HRGC) and coupled HRGC techniques, i.e., on-line HRGC-mass spectrometry and HRGC-Fourier transform infrared spectroscopy, after extractive sample preparation.  相似文献   

4.
1. Examination of two zooplankton species predominating in fish ponds, Daphnia magna and Chironomus larvae, revealed the presence of α- and β-carotene, echinenone, canthaxanthin and 3-hydroxy-4-oxo-β-carotene in Daphnia, and β-carotene and cryptoxanthin ester in Chironomus. No specific provitamins A2 (containing a 3,4-dehydro-β-ionone ring) were detected. 2. Guppies (Lebistes reticulatus) and platies (Xiphophorus variatus) were found to form vitamin A from β-carotene and from its oxygen-containing derivatives isozeaxanthin, canthaxanthin and astaxanthin. Slight conversion into vitamin A2 seemed to occur simultaneously. 3,4-Dehydro-3′-hydroxy-β-carotene formed little vitamin A, and the latter was mainly of the A2 type. Lutein was devoid of provitamin A properties. 3. In addition to vitamin A, β-carotene was detected in fish receiving the 4-oxo- and 4-hydroxy-carotenoids. A reaction scheme for the conversion of carotenoids into retinal and and 3,4-dehydroretinal is presented. 4. It is concluded that natural 4-oxo derivatives of β-carotene may play a significant role as vitamin A precursors for fish.  相似文献   

5.
Aspergillus niger JTS 191 was selected from many microorganisms tested as capable of converting ionones to other compounds having aromas. The individual transformation products from β-ionone were isolated and identified by comparison with synthetically derived compounds. The major products were (R)-4-hydroxy-β-ionone and (S)-2-hydroxy-β-ionone. 2-Oxo-, 4-oxo-, 3,4-dehydro-, 2,3-dehydro-4-oxo-, 3,4-dehydro-2-oxo-, (S)-2-acetoxy-, (R)-4-acetoxy-, and 5,6-epoxy-β-ionone and 4-(2,3,6-trimethylphenyl)-but-3-en-2-one were also identified. Analogous transformation products of β-methylionone also were identified. Based on gas-liquid chromatographic analysis during the fermentation, we propose two main oxidative pathways of β-ionone. The results of this study suggest that these transformations of β-ionones may be useful as tobacco-flavoring compounds.  相似文献   

6.
Phospholipase C (PLC) is a key enzyme in phosphoinositide turnover. Among 13 PLC isozymes, PLCδ1 and PLCδ3 share high sequence homology and similar tissue distribution, and are expected to have functional redundancy in many tissues. We previously reported that the simultaneous loss of PLCδ1 and PLCδ3 caused embryonic lethality because of excessive apoptosis and impaired vascularization of the placenta. Prenatal death of PLCδ1/PLCδ3 double-knockout mice hampered our investigation of the roles of these genes in adult animals. Here, we generated PLCδ1/PLCδ3 double-knockout mice that expressed PLCδ1 in extra-embryonic tissues (cDKO mice) to escape embryonic lethality. The cDKO mice were born at the expected Mendelian ratio, which indicated that the simultaneous loss of PLCδ1 and PLCδ3 in the embryo proper did not impair embryonic development. However, half of the cDKO mice died prematurely. In addition, the surviving cDKO mice spontaneously showed cardiac abnormalities, such as increased heart weight/tibial length ratios, impaired cardiac function, cardiac fibrosis, dilation, and hypertrophy. Predating these abnormalities, excessive apoptosis of their cardiomyocytes was observed. In addition, siRNA-mediated simultaneous silencing of PLCδ1 and PLCδ3 increased apoptosis in differentiated-H9c2 cardiomyoblasts. Activation of Akt and protein kinase C (PKC) θ was impaired in the hearts of the cDKO mice. siRNA-mediated simultaneous silencing of PLCδ1 and PLCδ3 also decreased activated Akt and PKCθ in differentiated-H9c2 cardiomyoblasts. These results indicate that PLCδ1 and PLCδ3 are required for cardiomyocyte survival and normal cardiac function.  相似文献   

7.
The 1,N6-(2-Hydroxy-3-hydroxymethylpropan-1,3-diyl)-2′-deoxyadenosine (1,N6-γ-HMHP-dA) adducts are formed upon bifunctional alkylation of adenine nucleobases in DNA by 1,2,3,4-diepoxybutane, the putative ultimate carcinogenic metabolite of 1,3-butadiene. The presence of a substituted 1,N6-propano group on 1,N6-γ-HMHP-dA is expected to block the Watson-Crick base pairing of the adducted adenine with thymine, potentially contributing to mutagenesis. In this study, the enzymology of replication past site-specific 1,N6-γ-HMHP-dA lesions in the presence of human DNA polymerases (hpols) β, η, κ, and ι and archebacterial polymerase Dpo4 was investigated. Run-on gel analysis with all four dNTPs revealed that hpol η, κ, and Dpo4 were able to copy the modified template. In contrast, hpol ι inserted a single base opposite 1,N6-γ-HMHP-dA but was unable to extend beyond the damaged site, and a complete replication block was observed with hpol β. Single nucleotide incorporation experiments indicated that although hpol η, κ, and Dpo4 incorporated the correct nucleotide (dTMP) opposite the lesion, dGMP and dAMP were inserted with a comparable frequency. HPLC-ESI-MS/MS analysis of primer extension products confirmed the ability of bypass polymerases to insert dTMP, dAMP, or dGMP opposite 1,N6-γ-HMHP-dA and detected large amounts of −1 and −2 deletion products. Taken together, these results indicate that hpol η and κ enzymes bypass 1,N6-γ-HMHP-dA lesions in an error-prone fashion, potentially contributing to A→T and A→C transversions and frameshift mutations observed in cells following treatment with 1,2,3,4-diepoxybutane.  相似文献   

8.
p24 family proteins are evolutionarily conserved transmembrane proteins involved in the early secretory pathway. Saccharomyces cerevisiae has 8 known p24 proteins that are classified into four subfamilies (p24α, -β, -γ, and -δ). Emp24 and Erv25 are the sole members of p24β and -δ, respectively, and deletion of either destabilizes the remaining p24 proteins, resulting in p24 null phenotype (p24Δ). We studied genetic and physical interactions of p24α (Erp1, -5, and -6) and γ (Erp2, -3, and -4). Deletion of the major p24α (Erp1) partially inhibited p24 activity as reported previously. A second mutation in either Erp5 or Erp6 aggravated the erp1Δ phenotype, and the triple mutation gave a full p24Δ phenotype. Similar genetic interactions were observed among the major p24γ (Erp2) and the other two γ members. All the p24α/γ isoforms interacted with both p24β and -δ. Interaction between p24β and -δ was isoform-selective, and five major α/γ pairs were detected. These results suggest that the yeast p24 proteins form functionally redundant αβγδ complexes. We also identified Rrt6 as a novel p24δ isoform. Rrt6 shows only limited sequence identity (∼15%) to known p24 proteins but was found to have structural properties characteristic of p24. Rrt6 was induced when cells were grown on glycerol and form an additional αβγδ complex with Erp3, Erp5, and Emp24. This complex was mainly localized to the Golgi, whereas the p24 complex containing Erv25, instead of Rrt6 but otherwise with the same isoform composition, was found mostly in the ER.  相似文献   

9.
The volatile substances present in a eutrophic shallow lake were determined qualitatively and quantitatively during the growing season, allowing a first-time analysis of the dynamics of these compounds in a water body. The major compounds found were β-cyclocitral, α-cyclocitral, β-ionone, 1,3,3-trimethylcyclohexene, 2,2,6-trimethylcyclohexanone, 2,6,6-trimethylcyclohex-2-en-1-one, eucalyptol, geosmin, two argosmin isomers, pent-1-en-3-ol, pent-1-en-3-one, heptadec-1-ene, heptadec-cis 5-ene, heptadeca-1, cis 8-diene, decanal, and hexanal. Most of the substances have not been detected before in natural waters. The occurrence of geosmin, the argosmin isomers, heptadec-cis 5-ene, and an unknown sesquiterpene could clearly be correlated with the appearance of Aphanizomenon gracile, as could the occurrence of β-cyclocitral with the appearance of Microcystis wesenbergii. The data presented indicate that a rapid metabolism or the elimination of these compounds occurs in lake water.  相似文献   

10.
Microbial transformation of the anti-inflammatory steroid medrysone (1) was carried out for the first time with the filamentous fungi Cunninghamella blakesleeana (ATCC 8688a), Neurospora crassa (ATCC 18419), and Rhizopus stolonifer (TSY 0471). The objective was to evaluate the anti-inflammatory potential of the substrate (1) and its metabolites. This yielded seven new metabolites, 14α-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (2), 6β-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (3), 15β-hydroxy-6α-methylpregn-4-ene-3,11,20-trione (4), 6β,17α-dihydroxy-6α-methylpregn-4-ene-3,11,20-trione (5), 6β,20S-dihydroxy-6α-methylpregn-4-ene-3,11-dione (6), 11β,16β-dihydroxy-6α-methylpregn-4-ene-3,11-dione (7), and 15β,20R-dihydroxy-6α-methylpregn-4-ene-3,11-dione (8). Single-crystal X-ray diffraction technique unambiguously established the structures of the metabolites 2, 4, 6, and 8. Fungal transformation of 1 yielded oxidation at the C-6β, -11β, -14α, -15β, -16β positions. Various cellular anti-inflammatory assays, including inhibition of phagocyte oxidative burst, T-cell proliferation, and cytokine were performed. Among all the tested compounds, metabolite 6 (IC50 = 30.3 μg/mL) moderately inhibited the reactive oxygen species (ROS) produced from zymosan-induced human whole blood cells. Compounds 1, 4, 5, 7, and 8 strongly inhibited the proliferation of T-cells with IC50 values between <0.2–10.4 μg/mL. Compound 7 was found to be the most potent inhibitor (IC50 < 0.2 μg/mL), whereas compounds 2, 3, and 6 showed moderate levels of inhibition (IC50 = 14.6–20.0 μg/mL). Compounds 1, and 7 also inhibited the production of pro-inflammatory cytokine TNF-α. All these compounds were found to be non-toxic to 3T3 cells (mouse fibroblast), and also showed no activity when tested against HeLa (human epithelial carcinoma), or against PC3 (prostate cancer) cancer cell lines.  相似文献   

11.
Microbial transformation of the antimelanoma agent betulinic acid was studied. The main objective of this study was to utilize microorganisms as in vitro models to predict and prepare potential mammalian metabolites of this compound. Preparative-scale biotransformation with resting-cell suspensions of Bacillus megaterium ATCC 13368 resulted in the production of four metabolites, which were identified as 3-oxo-lup-20(29)-en-28-oic acid, 3-oxo-11α-hydroxy-lup-20(29)-en-28-oic acid, 1β-hydroxy-3-oxo-lup-20(29)-en-28-oic acid, and 3β,7β,15α-trihydroxy-lup-20(29)-en-28-oic acid based on nuclear magnetic resonance and high-resolution mass spectral analyses. In addition, the antimelanoma activities of these metabolites were evaluated with two human melanoma cell lines, Mel-1 (lymph node) and Mel-2 (pleural fluid).  相似文献   

12.
Here we describe an association between α3β1 integrin and transmembrane-4 superfamily (TM4SF) protein CD151. This association is maintained in relatively stringent detergents and thus is remarkably stable in comparison with previously reported integrin–TM4SF protein associations. Also, the association is highly specific (i.e., observed in vitro in absence of any other cell surface proteins), and highly stoichiometric (nearly 90% of α3β1 associated with CD151). In addition, α3β1 and CD151 appeared in parallel on many cell lines and showed nearly identical skin staining patterns. Compared with other integrins, α3β1 exhibited a considerably higher level of associated phosphatidylinositol-4-kinase (PtdIns 4-kinase) activity, most of which was removed upon immunodepletion of CD151. Specificity for CD151 and PtdIns 4-kinase association resided in the extracellular domain of α3β1, thus establishing a novel paradigm for the specific recruitment of an intracellular signaling molecule. Finally, antibodies to either CD151 or α3β1 caused a ~88–92% reduction in neutrophil motility in response to f-Met-Leu-Phe on fibronectin, suggesting an functionally important role of these complexes in cell migration.  相似文献   

13.
Explorations into the α6-containing nicotinic acetylcholine receptors (α6* nAChRs) as putative drug targets have been severely hampered by the inefficient functional expression of the receptors in heterologous expression systems. In this study, the molecular basis for the problem was investigated through the construction of chimeric α6/α3 and mutant α3 and α6 subunits and functional characterization of these co-expressed with β4 or β4β3 subunits in tsA201 cells in a fluorescence-based assay and in Xenopus oocytes using two-electrode voltage clamp electrophysiology. Substitution of a small C-terminal segment in the second intracellular loop or the Phe223 residue in transmembrane helix 1 of α6 with the corresponding α3 segment or residue was found to enhance α6β4 functionality in tsA201 cells significantly, in part due to increased cell surface expression of the receptors. The gain-of-function effects of these substitutions appeared to be additive since incorporation of both α3 elements into α6 resulted in assembly of α6β4* receptors exhibiting robust functional responses to acetylcholine. The pharmacological properties exhibited by α6β4β3 receptors comprising one of these novel α6/α3 chimeras in oocytes were found to be in good agreement with those from previous studies of α6* nAChRs formed from other surrogate α6 subunits or concatenated subunits and studies of other heteromeric nAChRs. In contrast, co-expression of this α6/α3 chimera with β2 or β2β3 subunits in oocytes did not result in efficient formation of functional receptors, indicating that the identified molecular elements in α6 could be specific impediments for the expression of functional α6β4* nAChRs.  相似文献   

14.
α6β2 Nicotinic acetylcholine receptors (nAChRs) expressed by dopaminergic neurons in the CNS are potential therapeutic targets for the treatment of several neuropsychiatric diseases, including nicotine addiction and Parkinson disease. However, recent studies indicate that the α6 subunit can also associate with the β4 subunit to form α6β4 nAChRs that are difficult to pharmacologically distinguish from α6β2, α3β4, and α3β2 subtypes. The current study characterized a novel 16-amino acid α-conotoxin (α-CTx) TxIB from Conus textile whose sequence is GCCSDPPCRNKHPDLC-amide as deduced from gene cloning. The peptide and an analog with an additional C-terminal glycine were chemically synthesized and tested on rat nAChRs heterologously expressed in Xenopus laevis oocytes. α-CTx TxIB blocked α6/α3β2β3 nAChR with an IC50 of 28 nm. In contrast, the peptide showed little or no block of other tested subtypes at concentrations up to 10 μm. The three-dimensional solution structure of α-CTx TxIB was determined using NMR spectroscopy. α-CTx TxIB represents a uniquely selective ligand for probing the structure and function of α6β2 nAChRs.  相似文献   

15.

Background

γδ T cells play an important role in infectious, autoimmune, or neoplastic diseases. Here, a study was conducted to investigate the dynamic changes in phenotype and function of peripheral γδ T cells in patients with chronic hepatitis B (CHB) during pegylated-interferon (pegIFN)-α treatment, and to explore their roles in IFN-α therapy.

Methods

Total 15 CHB patients with pegIFN-α therapy and 6 healthy controls (HC) were enrolled in this study. Flow cytometry was used for the study of frequency of peripheral γδ T cells, subtypes, effector or memory γδ T cells, and also the IFN-γ+, TNF-α+, CD107a+ or Granzyme B+ γδ T cells in 10 patients at week 0, 4, 8, 12, 24, 36 and 48 of treatment. Another 5 CHB patients and 6 HC were recruited for the γδ T cell isolation, and gene expression in γδ T cells was evaluated before or after IFN-α treatment in vitro.

Results

Although γδT cells decreased in CHB patients during pegIFN-α therapy, their capacities to produce TNF-α and to express CD107a were enhanced. More effector γδT cells (CD27-CD45RA+) were found in the response group than in non-response group. Furthermore, IFN-α boosted the expression of Mx2 and cytokine genes in γδT cells from CHB patients in vitro.

Conclusion

IFN-α could enhance the cytokine production or cytotoxicity potential of γδT cells in vivo and in vitro. The enhanced function of γδT cells might contribute to the effect of IFN-α treatment.  相似文献   

16.
The type III polyketide synthases from fungi produce a variety of secondary metabolites including pyrones, resorcinols, and resorcylic acids. We previously reported that CsyB from Aspergillus oryzae forms α-pyrone csypyrone B compounds when expressed in A. oryzae. Feeding experiments of labeled acetates indicated that a fatty acyl starter is involved in the reaction catalyzed by CsyB. Here we report the in vivo and in vitro reconstitution analysis of CsyB. When CsyB was expressed in Escherichia coli, we observed the production of 3-acetyl-4-hydroxy-α-pyrones with saturated or unsaturated straight aliphatic chains of C9–C17 in length at the 6 position. Subsequent in vitro analysis using recombinant CsyB revealed that CsyB could accept butyryl-CoA as a starter substrate and malonyl-CoA and acetoacetyl-CoA as extender substrates to form 3-acetyl-4-hydroxy-6-propyl-α-pyrone. CsyB also afforded dehydroacetic acid from two molecules of acetoacetyl-CoA. Furthermore, synthetic N-acetylcysteamine thioester of β-ketohexanoic acid was converted to 3-butanoyl-4-hydroxy-6-propyl-α-pyrone by CsyB. These results therefore confirmed that CsyB catalyzed the synthesis of β-ketoacyl-CoA from the reaction of the starter fatty acyl CoA thioesters with malonyl-CoA as the extender through decarboxylative condensation and further coupling with acetoacetyl-CoA to form 3-acetyl-4-hydroxy-6-alkyl-α-pyrone. CsyB is the first type III polyketide synthase that synthesizes 3-acetyl-4-hydroxy-6-alkyl-α-pyrone by catalyzed the coupling of two β-ketoacyl-CoAs.  相似文献   

17.

Background

In the present study, we examined the inhibitory effects of a methanolic extract, dichloromethane fraction, water layer, and polyhydroxylated sterols (1–4) isolated from the Vietnamese starfish Protoreaster nodosus on pro-inflammatory cytokine (IL-12 p40, IL-6, and TNF-α) production in LPS-stimulated bone marrow-derived dendritic cells (BMDCs) using enzyme-linked immunosorbent assays (ELISA).

Results

The methanolic extract and dichloromethane fraction exerted potent inhibitory effects on the production of all three pro-inflammatory cytokines, with IC50 values ranging from 0.60 ± 0.01 to 26.19 ± 0.64 μg/mL. Four highly pure steroid derivatives (1–4) were isolated from the dichloromethane fraction and water layer of P. nodosus. Potent inhibitory activities were also observed for (25S) 5α-cholestane-3β,4β,6α,7α,8β,15α,16β,26-octol (3) on the production of IL-12 p40 and IL-6 (IC50s = 3.11 ± 0.08 and 1.35 ± 0.03 μM), and for (25S) 5α-cholestane-3β,6α,8β,15α,16β,26-hexol (1) and (25S) 5α-cholestane-3β,6α,7α,8β,15α,16β,26-heptol (2) on the production of IL-12 p40 (IC50s = 0.01 ± 0.00 and 1.02 ± 0.01 μM). Moreover, nodososide (4) exhibited moderate inhibitory effects on IL-12 p40 and IL-6 production.

Conclusion

This is the first report of the anti-inflammatory activity from the starfish P. nodosus. The main finding of this study is the identification oxygenated steroid derivatives from P. nodosus with potent anti-inflammatory activities that may be developed as therapeutic agents for inflammatory diseases.  相似文献   

18.
The α6β4 integrin promotes carcinoma in-vasion by its activation of a phosphoinositide 3-OH (PI3-K) signaling pathway (Shaw, L.M., I. Rabinovitz, H.H.-F. Wang, A. Toker, and A.M. Mercurio. Cell. 91: 949–960). We demonstrate here using MDA-MB-435 breast carcinoma cells that α6β4 stimulates chemotactic migration, a key component of invasion, but that it has no influence on haptotaxis. Stimulation of chemotaxis by α6β4 expression was observed in response to either lysophosphatidic acid (LPA) or fibroblast conditioned medium. Moreover, the LPA-dependent formation of lamellae in these cells is dependent upon α6β4 expression. Both lamellae formation and chemotactic migration are inhibited or “gated” by cAMP and our results reveal that a critical function of α6β4 is to suppress the intracellular cAMP concentration by increasing the activity of a rolipram-sensitive, cAMP-specific phosphodiesterase (PDE). This PDE activity is essential for lamellae formation, chemotactic migration and invasion based on data obtained with PDE inhibitors. Although PI3-K and cAMP-specific PDE activities are both required to promote lamellae formation and chemotactic migration, our data indicate that they are components of distinct signaling pathways. The essence of our findings is that α6β4 stimulates the chemotactic migration of carcinoma cells through its ability to influence key signaling events that underlie this critical component of carcinoma invasion.  相似文献   

19.
Biotransformation of 3β-acetoxy-19-hydroxycholest-5-ene (19-HCA, 6 g) by Moraxella sp. was studied. Estrone (712 mg) was the major metabolite formed. Minor metabolites identified were 5α-androst-1-en-19-ol-3,17-dione (33 mg), androst-4-en-19-ol-3,17-dione (58 mg), androst-4-en-9α,19-diol-3,17-dione (12 mg), and androstan-19-ol-3,17-dione (1 mg). Acidic metabolites were not formed. Time course experiments on the fermentation of 19-HCA indicated that androst-4-en-19-ol-3,17-dione was the major metabolite formed during the early stages of incubation. However, with continuing fermentation its level dropped, with a concomitant increase in estrone. Fermentation of 19-HCA in the presence of specific inhibitors or performing the fermentation for a shorter period (48 h) did not result in the formation of acidic metabolites. Resting-cell experiments carried out with 19-HCA (200 mg) in the presence of α,α′-bipyridyl led to the isolation of three additional metabolites, viz., cholestan-19-ol-3-one (2 mg), cholest-4-en-19-ol-3-one (10 mg), and cholest-5-en-3β,19-diol (12 mg). Similar results were also obtained when n-propanol was used instead of α,α′-bipyridyl. Resting cells grown on 19-HCA readily converted both 5α-androst-1-en-19-ol-3,17-dione and androst-4-en-19-ol-3,17-dione into estrone. Partially purified 1,2-dehydrogenase from steroid-induced Moraxella cells transformed androst-4-en-19-ol-3,17-dione into estrone and formaldehyde in the presence of phenazine methosulfate, an artificial electron acceptor. These results suggest that the degradation of the hydrocarbon side chain of 19-HCA does not proceed via C22 phenolic acid intermediates and complete removal of the C17 side chain takes place prior to the aromatization of the A ring in estrone. The mode of degradation of the sterol side chain appears to be through the fission of the C17-C20 bond. On the basis of these observations, a new pathway for the formation of estrone from 19-HCA in Moraxella sp. has been proposed.  相似文献   

20.
Fucα1–6 oligosaccharide has a variety of biological functions and serves as a biomarker for hepatocellular carcinoma because of the elevated presence of fucosylated α-fetoprotein (AFP) in this type of cancer. In this study we purified a novel Fucα1–6-specific lectin from the mushroom Pholiota squarrosa by ion-exchange chromatography and affinity chromatography on thyroglobulin-agarose. The purified lectin was designated as PhoSL (P. squarrosa lectin). SDS-PAGE, MALDI-TOF mass spectrometry, and N-terminal amino acid sequencing indicate that PhoSL has a molecular mass of 4.5 kDa and consists of 40 amino acids (NH2-APVPVTKLVCDGDTYKCTAYLDFGDGRWVAQWDTNVFHTG-OH). Isoelectric focusing of the lectin showed bands near pI 4.0. The lectin activity was stable between pH 2.0 and 11.0 and at temperatures ranging from 0 to 100 °C for incubation times of 30 min. When PhoSL was investigated with frontal affinity chromatography using 132 pyridylaminated oligosaccharides, it was found that the lectin binds only to core α1–6-fucosylated N-glycans and not to other types of fucosylated oligosaccharides, such as α1–2-, α1–3-, and α1–4-fucosylated glycans. Furthermore, PhoSL bound to α1–6-fucosylated AFP but not to non-fucosylated AFP. In addition, PhoSL was able to demonstrate the differential expression of α1–6 fucosylation between primary and metastatic colon cancer tissues. Thus, PhoSL will be a promising tool for analyzing the biological functions of α1–6 fucosylation and evaluating Fucα1–6 oligosaccharides as cancer biomarkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号