首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During cortical development, neurons generated at the same time in the ventricular zone migrate out into the cortical plate and form a cortical layer (Berry and Eayrs, 1963, Nature 197:984–985; Berry and Rogers, 1965, J. Anat. 99:691–709). We have been studying both the formation and maintenance of cortical layers in slice cultures from rat cortex. The bromodexyuridine (BrdU) method was used to label cortical neurons on their birthday in vivo. When slice cultures were prepared from animals at different embryonic and postnatal ages, all cortical layers that have already been established in vivo remained preserved for several weeks in vitro. In slice cultures prepared during migration in the cortex, cells contiuned to migrate towards the pial side of the cortical slice, however, migration ceased after about 1 week in culture. Thus, cortical cells reached their final laminar position only in slice cultures from postnatal animals, whereas in embryonic slices, migrating cells became scattered throughout the cortex. Previous studies demonstrated that radial glia fibers are the major substrate for migrating neurons (Rakic, 1972, J. Comp. Neurol. 145:61–84; Hatten and Mason, 1990, Experientia 46:907–916). Using antibodies directed against the intermediate filament Vimentin, radial glial cells were detected in all slice cutures where cell migration did occur. Comparable to the glia development in vivo, radial glial fibers disappeared and astrocytes containing the glia fibrillary-associated protein (GFAP) differentiated in slice cultures from postnatal cortex, after the neurons have completed their migration. In contrast, radial glial cells were detected over the whole culture period, and very few astrocytes differentiated in embryonic slices, where cortical neurons failed to finish their migration. The results of this study indicate that the local environment is sufficient to sustain the layered organization of the cortex and support the migration of cortical neurons. In addition, our results reveal a close relationship between cell migration and the developmental status of glial cells. © 1992 John Wiley & Sons, Inc.  相似文献   

2.
Cortical progenitor cells give rise to neurons during embryonic development and to glia after birth. While lineage studies indicate that multipotent progenitor cells are capable of generating both neurons and glia, the role of extracellular signals in regulating the sequential differentiation of these cells is poorly understood. To investigate how factors in the developing cortex might influence cell fate, we developed a cortical slice overlay assay in which cortical progenitor cells are cultured over cortical slices from different developmental stages. We find that embryonic cortical progenitors cultured over embryonic cortical slices differentiate into neurons and those cultured over postnatal cortical slices differentiate into glia, suggesting that the fate of embryonic progenitors can be influenced by developmentally regulated signals. In contrast, postnatal progenitor cells differentiate into glial cells when cultured over either embryonic or postnatal cortical slices. Clonal analysis indicates that the postnatal cortex produces a diffusible factor that induces progenitor cells to adopt glial fates at the expense of neuronal fates. The effects of the postnatal cortical signals on glial cell differentiation are mimicked by FGF2 and CNTF, which induce glial fate specification and terminal glial differentiation respectively. These observations indicate that cell fate specification and terminal differentiation can be independently regulated and suggest that the sequential generation of neurons and glia in the cortex is regulated by a developmental increase in gliogenic signals.  相似文献   

3.
Lineage of radial glia in the chicken optic tectum.   总被引:7,自引:0,他引:7  
In many parts of the central nervous system, the elongated processes of radial glial cells are believed to guide immature neurons from the ventricular zone to their sites of differentiation. To study the clonal relationships of radial glia to other neural cell types, we used a recombinant retrovirus to label precursor cells in the chick optic tectum with a heritable marker, the E. coli lacZ gene. The progeny of the infected cells were detected at later stages of development with a histochemical stain for the lacZ gene product. Radial glia were identified in a substantial fraction of clones, and these were studied further. Our main results are the following. (a) Clones containing radial glia frequently contained neurons and/or astrocytes, but usually not other radial glia. Thus, radial glia derive from a multipotential progenitor rather than from a committed radial glial precursor. (b) Production of radial glia continues until at least embryonic day (E) 8, after the peak of neuronal birth is over (approximately E5) and after radial migration of immature neurons has begun (E6-7). Radial glial and neuronal lineages do not appear to diverge during this interval, and radial glia are among the last cells that their progenitors produce. (c) As they migrate, many cells are closely apposed to the apical process of their sibling radial glia. Thus, radial glia may frequently guide the migration of their clonal relatives. (d) The population of labelled radial glia declines between E15 and E19-20 (just before hatching), concurrent with a sharp increase in the number of labelled astrocytes. This result suggests that some tectal radial glia transform into astrocytes, as occurs in mammalian cerebral cortex, although others persist after hatching. To reconcile the observations that many radial glia are present early, that radial glia are among the last offspring of a multipotential stem cell, and that most clones contain only a single radial glial cell, we suggest that the stem cell is, or becomes, a radial glial cell.  相似文献   

4.
Numerous functions related to neuronal migration are linked to the glycoprotein reelin. Reelin also elongates radial glia, which are disrupted in mutant reeler mice. Our lab developed a model of cortical dysplasia in ferrets that shares features with the reeler mouse, including impaired migration of neurons into the cerebral cortex and disrupted radial glia. Explants of normal ferret cortex in coculture with dysplastic ferret cortex restore the deficits in this model. To determine if reelin is integral to the repair, we used explants of P0 mouse cortex either of the wild type (WT) or heterozygous (het) for the reelin gene, as well as P0 reeler cortex (not containing reelin), in coculture with organotypic cultures of dysplastic ferret cortex. This arrangement revealed that all types of mouse cortical explants (WT, het, reeler) elongated radial glia in ferret cortical dysplasia, indicating that reelin is not required for proper radial glial morphology. Migration of cells into ferret neocortex, however, did not improve with explants of reeler cortex, but was almost normal after pairing with WT or het explants. We also placed an exogenous source of reelin in ferret cultures at the pial surface to reveal that migrating cells move toward the reelin source in dysplastic cortex; radial glia in these cultures were also improved toward normal. Our results demonstrate that the normotopic position of reelin is important for proper neuronal positioning, and that reelin is capable of elongating radial glial cells but is not the only radialization factor.  相似文献   

5.
6.
The mammalian cerebral cortex consists of six layers that are generated via coordinated neuronal migration during the embryonic period. Recent studies identified specific phases of radial migration of cortical neurons. After the final division, neurons transform from a multipolar to a bipolar shape within the subventricular zone-intermediate zone (SVZ-IZ) and then migrate along radial glial fibres. Mice lacking Cdk5 exhibit abnormal corticogenesis owing to neuronal migration defects. When we introduced GFP into migrating neurons at E14.5 by in utero electroporation, we observed migrating neurons in wild-type but not in Cdk5(-/-) embryos after 3-4 days. Introduction of the dominant-negative form of Cdk5 into the wild-type migrating neurons confirmed specific impairment of the multipolar-to-bipolar transition within the SVZ-IZ in a cell-autonomous manner. Cortex-specific Cdk5 conditional knockout mice showed inverted layering of the cerebral cortex and the layer V and callosal neurons, but not layer VI neurons, had severely impaired dendritic morphology. The amount of the dendritic protein Map2 was decreased in the cerebral cortex of Cdk5-deficient mice, and the axonal trajectory of cortical neurons within the cortex was also abnormal. These results indicate that Cdk5 is required for proper multipolar-to-bipolar transition, and a deficiency of Cdk5 results in abnormal morphology of pyramidal neurons. In addition, proper radial neuronal migration generates an inside-out pattern of cerebral cortex formation and normal axonal trajectories of cortical pyramidal neurons.  相似文献   

7.
Radial glia are among the earliest cell types to differentiate in the developing mammalian forebrain. Glial fibers span the early cortical wall, forming a dense scaffold; this persists throughout corticogenesis, providing a cellular substrate which supports and directs the migration of young neurons. Although the mechanisms regulating radial glial cell development are poorly understood, a secreted cortical radial glial differentiation signal was recently identified in the embryonic mouse forebrain. This signal is abundant at the time radial glia function to support neuronal migration, and down-regulated perinatally, when radial glia are known to undergo transformation into astrocytes. Therefore, it seems that this signal functions as a radial glial maintenance factor, the availability of which regulates the phenotype of cortical astroglia. Here the differentiation signal is further characterized as RF60, a protein with a molecular weight of approximately 60 kD. In addition, the neurologic mutant mouse reeler provides a genetic model for analysis of RF60 function. Radial glia in reeler cortex are shown to be poorly differentiated and the radial scaffold is shown to be maintained for a shorter time than normal. Furthermore, although astroglial cells from normal cortex are induced to elaborate a radial phenotype by RF60, reeler astroglia show an impaired differentiation response to this. These findings suggest that an intrinsic defect in glial differentiation contributes to the phenotype of abnormal cortical lamination seen in reeler mouse, and indicate that RF60 may play a critical role in normal cortical patterning. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 459–472, 1997  相似文献   

8.
9.
Radial glial cells are astrocyte precursors, which are transiently present in the developing central nervous system and transform eventually into astrocytes in the cerebral cortex and into Bergmann glia in the cerebellum. Previous reports indicate that the transformation from radial glia to astrocytes can be reversed by diffusible chemical signals derived from embryonic forebrain in vitro and by freezing injury in vivo. But there is no direct evidence proving that mature astrocytes can de-differentiate into radial glial cells. Here we show that purified astrocytes could de-differentiate into radial glial-like cells (RGLCs) in vitro with freeze-thaw stimulation. RGLCs had the expression of markers for radial glia including Nestin and Pax6, and astrocyte markers, the glial fibrillary acidic protein and Vimentin. Cortical neurons, when co-cultured with RGLCs, migrated along the processes of RGLCs at an average speed of 26.26 +/- 3.36 microm/h. Moreover, the proliferation of RGLCs was significantly promoted by epidermal growth factor (EGF) at the concentration of 10-30 ng/ml. These results reveal that low temperature induces astrocytes to de-differentiate into immature RGLCs, which provides an in vitro model to investigate mechanisms of astroglial cells de-differentiation.  相似文献   

10.
For many years, it was assumed that neurons and glia in the central nervous system were produced from two distinct precursor pools that diverged early during embryonic development. This theory was partially based on the idea that neurogenesis and gliogenesis occurred during different periods of development, and that neurogenesis ceased perinatally. However, there is now abundant evidence that neural stem cells persist in the adult brain and support ongoing neurogenesis in restricted regions of the central nervous system. Surprisingly, these stem cells have the characteristics of fully differentiated glia. Neuroepithelial stem cells in the embryonic neural tube do not show glial characteristics, raising questions about the putative lineage from embryonic to adult stem cells. In the developing brain, radial glia have long been known to produce cortical astrocytes, but recent data indicate that radial glia might also divide asymmetrically to produce cortical neurons. Here we review these new developments and propose that the stem cells in the central nervous system are contained within the neuroepithelial --> radial glia --> astrocyte lineage.  相似文献   

11.
Precursor cells of the embryonic cortex sequentially generate neurons and then glial cells, but the mechanisms regulating this neurogenic-to-gliogenic transition are unclear. Using cortical precursor cultures, which temporally mimic this in vivo differentiation pattern, we demonstrate that cortical neurons synthesize and secrete the neurotrophic cytokine cardiotrophin-1, which activates the gp130-JAK-STAT pathway and is essential for the timed genesis of astrocytes in vitro. Our data indicate that a similar phenomenon also occurs in vivo. In utero electroporation of neurotrophic cytokines in the environment of embryonic cortical precursors causes premature gliogenesis, while acute perturbation of gp130 in cortical precursors delays the normal timed appearance of astrocytes. Moreover, the neonatal cardiotrophin-1-/- cortex contains fewer astrocytes. Together, these results describe a neural feedback mechanism; newly born neurons produce cardiotrophin-1, which instructs multipotent cortical precursors to generate astrocytes, thereby ensuring that gliogenesis does not occur until neurogenesis is largely complete.  相似文献   

12.
Differential adhesion between migrating neurons and transient radial glial fibers enables the deployment of neurons into appropriate layers in the developing cerebral cortex. The identity of radial glial signals that regulate the termination of migration remains unclear. Here, we identified a radial glial surface antigen, SPARC (secreted protein acidic and rich in cysteine)-like 1, distributed predominantly in radial glial fibers passing through the upper strata of the cortical plate (CP) where neurons end their migration. Neuronal migration and adhesion assays indicate that SPARC-like 1 functions to terminate neuronal migration by reducing the adhesivity of neurons at the top of the CP. Cortical neurons fail to achieve appropriate positions in the absence of SPARC-like 1 function in vivo. Together, these data suggest that antiadhesive signaling via SPARC-like 1 on radial glial cell surfaces may enable neurons to recognize the end of migration in the developing cerebral cortex.  相似文献   

13.
Most cerebral cortical neurons are generated between embryonic days 11 and 17 (E11-17) in the mouse. Radial glial cells also proliferate during this time; they can give rise to neurons and many later transform into astrocytes. It is thought that most glial cells comprising the mature cortex, including additional astrocytes, are generated after neurogenesis is complete. Little is known about the cellular events that occur during the transition from the phase dominated by neurogenesis to that of gliogenesis. We labeled cells generated on E18 and E19 and the day of birth (P0) with bromodeoxyuridine and followed their fates over the following 20 days. Our results showed that, on E18-P0, cells divide throughout the ventricular zone, subventricular zone, intermediate zone, and to a lesser extent, the developing cortical plate, whereas neuronal precursors generated prior to E18 divide in the ventricular zone. Our results indicated that 30-40% of cells dividing on E18 give rise to neurons that migrate to the most superficial part of the cortex. The rest of the cells dividing on E18 and 76-94% of cells generated on E19 and P0 express the QKI RNA-binding protein, indicating that they either remain as multipotential progenitors or develop into glial cells. Nine to fifteen percent of cells generated on E18-P0 become glial fibrillary acidic protein-positive astrocytes. Many E19 and P0 labeled cells disappear between 2 and 20 days postlabeling, probably because they continue to divide. We conclude that the population of cells produced at the end of cortical neurogenesis is heterogeneous and comprises postmitotic neurons, glia (including astrocytes), and possibly multipotential progenitors.  相似文献   

14.
Origin, timing and direction of neuronal migration during brain development determine the distinct organization of adult structures. Changes in these processes might have driven the evolution of the forebrain in vertebrates. GABAergic neurons originate from the ganglionic eminence in mammals and migrate tangentially to the cortex. We are interested in differences and similarities in tangential migration patterns across corresponding telencephalic territories in mammals and reptiles. Using morphological criteria and expression patterns of Darpp-32, Tbr1, Nkx2.1 and Pax6 genes, we show in slice cultures of turtle embryos that early cohorts of tangentially migrating cells are released from the medial ganglionic eminence between stages 14 and 18. Additional populations migrate tangentially from the dorsal subpallium. Large cohorts of tangentially migrating neurons originate ventral to the dorsal ventricular ridge at stage 14 and from the lateral ganglionic eminence from stage 15. Release of GABAergic cells from these regions was investigated further in explant cultures. Tangential migration in turtle proceeds in a fashion similar to mammals. In chimeric slice culture and in ovo graft experiments, the tangentially migrating cells behaved according to the host environment - turtle cells responded to the available cues in mouse slices and mouse cells assumed characteristic migratory routes in turtle brains, indicating highly conserved embryonic signals between these distant species. Our study contributes to the evaluation of theories on the origin of the dorsal cortex and indicates that tangential migration is universal in mammals and sauropsids.  相似文献   

15.
Interneurons in the olfactory bulb (OB) are generated from neuronal precursor cells migrating from anterior subventricular zone (SVZa) not only in the developing embryo but also throughout the postnatal life of mammals. In the present study, we established an in vivo electroporation assay to label SVZa cells of rat both at embryonic and postnatal ages, and traced SVZa progenitors and followed their migration pathway and differentiation. We found that labeled cells displayed high motility. Interestingly, the postnatal cells migrated faster than the embryonic cells after applying this assay at different ages of brain development. Furthermore, based on brain slice culture and time-lapse imaging, we analyzed the detail migratory properties of these labeled precursor neurons. Finally, tissue transplantation experiments revealed that cells already migrated in subependymal zone of OB were transplanted back into rostral migratory stream (RMS), and these cells could still migrate out tangentially along RMS to OB. Taken together, these findings provide an in vivo labeling assay to follow and trace migrating cells in the RMS, their maturation and integration into OB neuron network, and unrecognized phenomena that postnatal SVZa progenitor cells with higher motility than embryonic cells, and their migration was affected by extrinsic environments.  相似文献   

16.
17.
Recent studies suggest that neurons born in the developing basal forebrain migrate long distances perpendicularly to radial glia and that many of these cells reach the developing neocortex. This form of tangential migration, however, has not been demonstrated in vivo, and the sites of origin, pathways of migration and final destinations of these neurons in the postnatal brain are not fully understood. Using ultrasound-guided transplantation in utero, we have mapped the migratory pathways and fates of cells born in the lateral and medial ganglionic eminences (LGE and MGE) in 13.5-day-old mouse embryos. We demonstrate that LGE and MGE cells migrate along different routes to populate distinct regions in the developing brain. We show that LGE cells migrate ventrally and anteriorly, and give rise to the projecting medium spiny neurons in the striatum, nucleus accumbens and olfactory tubercle, and to granule and periglomerular cells in the olfactory bulb. By contrast, we show that the MGE is a major source of neurons migrating dorsally and invading the developing neocortex. MGE cells migrate into the neocortex via the neocortical subventricular zone and differentiate into the transient subpial granule neurons in the marginal zone and into a stable population of GABA-, parvalbumin- or somatostatin-expressing interneurons throughout the cortical plate.  相似文献   

18.
Modes of neuronal migration in the developing cerebral cortex   总被引:2,自引:0,他引:2  
The conventional scheme of cortical formation shows that postmitotic neurons migrate away from the germinal ventricular zone to their positions in the developing cortex, guided by the processes of radial glial cells. However, recent studies indicate that different neuronal types adopt distinct modes of migration in the developing cortex. Here, we review evidence for two modes of radial movement: somal translocation, which is adopted by the early-generated neurons; and glia-guided locomotion, which is used predominantly by pyramidal cells. Cortical interneurons, which originate in the ventral telencephalon, use a third mode of migration. They migrate tangentially into the cortex, then seek the ventricular zone before moving radially to take up their positions in the cortical anlage.  相似文献   

19.
Notch family molecules are thought to be negative regulators of neuronal differentiation in early brain development. After expression in the embryonic period, Notch2 continues to be expressed postnatally in the specific regions in the rodent brain. Here, we examined Notch2 expression in the postnatal mouse brain using lacZ knockin animals at the Notch2 locus. Notch2 expression was observed in the developing cerebellum and hippocampus, characteristic regions where neurogenesis persists after birth. Double staining of sections revealed that Notch2 was expressed by Bergmann glia in the cerebellum, radial glia in the hippocampus, and some astrocytes in both regions. Notch2 expression by glial cells was clearly confirmed in dissociated cell cultures. Interestingly, neocortical glia, many of which did not express Notch2 in vivo, did express Notch2 in a dissociated culture condition. The triple staining of dissociated cell cultures revealed that stronger Notch2 expression correlated with the immature type of glial gene expressions: stronger vimentin and weaker glial fibrillary acidic protein expressions. In addition, Notch2 expression correlated with the incorporation of bromodeoxyuridine both in vivo and in vitro. Thus, these findings demonstrate that Notch2 is expressed not only by neuronal cells in the embryonic brain, but also by glial cells in the postnatal brain, and that its expression negatively correlates with glial differentiation, proposing its novel function as a negative regulator of glial differentiation in mammalian brain development.  相似文献   

20.
Presenilin-1 (PS1), the major causative gene of familial Alzheimer disease, regulates neuronal differentiation and Notch signaling during early neural development. To investigate the role of PS1 in neuronal migration and cortical lamination of the postnatal brain, we circumvented the perinatal lethality of PS1-null mice by generating a conditional knockout (cKO) mouse in which PS1 inactivation is restricted to neural progenitor cells (NPCs) and NPC-derived neurons and glia. BrdU birthdating analysis revealed that many late-born neurons fail to migrate beyond the early-born neurons to arrive at their appropriate positions in the superficial layer, while the migration of the early-born neurons is largely normal. The migration defect of late-born neurons coincides with the progressive reduction of radial glia in PS1 cKO mice. In contrast to the premature loss of Cajal-Retzius (CR) neurons in PS1-null mice, generation and survival of CR neurons are unaffected in PS1 cKO mice. Furthermore, the number of proliferating meningeal cells, which have been shown to be important for the survival of CR neurons, is increased in PS1-null mice but not in PS1 cKO mice. These findings show a cell-autonomous role for PS1 in cortical lamination and radial glial development, and a non-cell-autonomous role for PS1 in CR neuron survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号