首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims:  To purify the biosurfactant produced by a marine Bacillus circulans strain and evaluate the improvement in surface and antimicrobial activities.
Methods and Results:  The study of biosurfactant production by B. circulans was carried out in glucose mineral salts (GMS) medium using high performance thin layer chromatography (HPTLC) for quantitative estimation. The biosurfactant production by this strain was found to be growth-associated showing maximum biosurfactant accumulation at 26 h of fermentation. The crude biosurfactants were purified using gel filtration chromatography with Sephadex® G-50 matrix. The purification attained by employing this technique was evident from UV–visible spectroscopy and TLC analysis of crude and purified biosurfactants. The purified biosurfactants showed an increase in surface activity and a decrease in critical micelle concentration values. The antimicrobial action of the biosurfactants was also enhanced after purification.
Conclusions:  The marine B. circulans used in this study produced biosurfactants in a growth-associated manner. High degree of purification could be obtained by using gel filtration chromatography. The purified biosurfactants showed enhanced surface and antimicrobial activities.
Significance and Impact of the Study:  The antimicrobial biosurfactant produced by B. circulans could be effectively purified using gel filtration and can serve as new potential drugs in antimicrobial chemotherapy.  相似文献   

2.
1. Groundwater fluxes of nitrogen and dissolved organic carbon (DOC) were investigated in Grape Vine Canyon Stream in the Mojave Desert focusing on the rate of inputs and the fate of groundwater-derived nutrients in the stream. Discharge rates from different ground waters were measured using an end-member mixing model coupled with injections of a conservative solute tracer into the stream channel.
2. In surface water, nitrate concentration averaged 1.13 mg N L–1 and DOC concentration averaged 1.82 mg C L–1.
3. Groundwater discharge into Grape Vine Canyon Stream was derived from three sources. Nitrate concentration varied among the three groundwater sources with mean concentrations of 0.56, 0.94 and 0.08 mg N L–1. DOC, in contrast, did not vary among ground water sources, with an overall average concentration of 2.96 mg C L–1.
4. In the surface stream, nitrate concentration was two-fold greater than the concentration predicted from groundwater input, indicating that in-stream processes generated nitrate. Stream DOC concentration was lower than predicted based upon groundwater input rate. The production of nitrate and loss of DOC suggest that DOC is lost through mineralisation of dissolved organic matter, possibly resulting in the mineralisation of dissolved organic nitrogen to ammonium and subsequent transformation to nitrate via nitrification. In further support of this hypothesised linkage, DOC loss explained 80–89% of the variance in nitrate production in Grape Vine Canyon Stream.  相似文献   

3.
Little is known about the interaction of biosurfactants with bacterial cells. Recent work in the area of biodegradation suggests that there are two mechanisms by which biosurfactants enhance the biodegradation of slightly soluble organic compounds. First, biosurfactants can solubilize hydrophobic compounds within micelle structures, effectively increasing the apparent aqueous solubility of the organic compound and its availability for uptake by a cell. Second, biosurfactants can cause the cell surface to become more hydrophobic, thereby increasing the association of the cell with the slightly soluble substrate. Since the second mechanism requires very low levels of added biosurfactant, it is the more intriguing of the two mechanisms from the perspective of enhancing the biodegradation process. This is because, in practical terms, addition of low levels of biosurfactants will be more cost-effective for bioremediation. To successfully optimize the use of biosurfactants in the bioremediation process, their effect on cell surfaces must be understood. We report here that rhamnolipid biosurfactant causes the cell surface of Pseudomonas spp. to become hydrophobic through release of lipopolysaccharide (LPS). In this study, two Pseudomonas aeruginosa strains were grown on glucose and hexadecane to investigate the chemical and structural changes that occur in the presence of a rhamnolipid biosurfactant. Results showed that rhamnolipids caused an overall loss in cellular fatty acid content. Loss of fatty acids was due to release of LPS from the outer membrane, as demonstrated by 2-keto-3-deoxyoctonic acid and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and further confirmed by scanning electron microscopy. The amount of LPS loss was found to be dependent on rhamnolipid concentration, but significant loss occurred even at concentrations less than the critical micelle concentration. We conclude that rhamnolipid-induced LPS release is the probable mechanism of enhanced cell surface hydrophobicity.  相似文献   

4.
1. We assessed the terrestrial export of organic carbon, which effectively supported aquatic bacterial production (BP), from small boreal catchments during spring flood. We analysed stream runoff from nine small catchments with different proportions of peat mires and coniferous forests by monitoring the dissolved organic carbon (DOC) flux in combination with conducting bacterial bioassays.
2. Multiple linear regression analysis showed that BP during 7-day-dark bioassays (BP7; μg C L−1day−1) was explained by both the quantity and quality (low-molecular weight fractions) of the DOC. BP7 can be used as a measure of export of terrestrial organic carbon that is highly bioavailable.
3. Total export of DOC during spring flood from the different catchments ranged from 20 to 27 kg ha−1 and was negatively correlated to forest cover (%). However, the export of BP7 carbon was positively correlated to forest cover and varied from about 0.1 kg ha−1 in mire-dominated streams to about 0.2 kg ha−1 in forest-dominated streams.
4. The high bioavailability of forest carbon suggests that forests are the main contributors of BP-supporting carbon in boreal streams although mires have higher area-specific export of DOC.  相似文献   

5.
Little is known about the interaction of biosurfactants with bacterial cells. Recent work in the area of biodegradation suggests that there are two mechanisms by which biosurfactants enhance the biodegradation of slightly soluble organic compounds. First, biosurfactants can solubilize hydrophobic compounds within micelle structures, effectively increasing the apparent aqueous solubility of the organic compound and its availability for uptake by a cell. Second, biosurfactants can cause the cell surface to become more hydrophobic, thereby increasing the association of the cell with the slightly soluble substrate. Since the second mechanism requires very low levels of added biosurfactant, it is the more intriguing of the two mechanisms from the perspective of enhancing the biodegradation process. This is because, in practical terms, addition of low levels of biosurfactants will be more cost-effective for bioremediation. To successfully optimize the use of biosurfactants in the bioremediation process, their effect on cell surfaces must be understood. We report here that rhamnolipid biosurfactant causes the cell surface of Pseudomonas spp. to become hydrophobic through release of lipopolysaccharide (LPS). In this study, two Pseudomonas aeruginosa strains were grown on glucose and hexadecane to investigate the chemical and structural changes that occur in the presence of a rhamnolipid biosurfactant. Results showed that rhamnolipids caused an overall loss in cellular fatty acid content. Loss of fatty acids was due to release of LPS from the outer membrane, as demonstrated by 2-keto-3-deoxyoctonic acid and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and further confirmed by scanning electron microscopy. The amount of LPS loss was found to be dependent on rhamnolipid concentration, but significant loss occurred even at concentrations less than the critical micelle concentration. We conclude that rhamnolipid-induced LPS release is the probable mechanism of enhanced cell surface hydrophobicity.  相似文献   

6.
Aims:  Brettanomyces / Dekkera bruxellensis is a particularly troublesome wine spoilage yeast. This work was aimed at characterizing its behaviour in terms of growth and volatile compound production in red wine.
Methods and Results:  Sterile red wines were inoculated with 5 × 103 viable cells ml−1 of three B. bruxellensis strains and growth and volatile phenol production were followed for 1 month by means of plate counts and gas chromatography-mass spectrometry (GC-MS) respectively. Maximum population levels generally attained 106–107 colony forming units (CFU) ml−1 and volatile phenol concentrations ranged from 500 to 4000 μg l−1. Brettanomyces bruxellensis multiplication was also accompanied by the production of organic acids (from C2 to C10), short chain acid ethyl-esters and the 'mousy off-flavour' component 2-acetyl-tetrahydropyridine.
Conclusions:  Different kinds of 'Brett character' characterized by distinct metabolic and sensory profiles can arise in wine depending on the contaminating strain, wine pH and sugar content and the winemaking stage at which contamination occurs.
Significance and Impact of the Study:  We identified new chemical markers that indicate wine defects caused by B. bruxellensis. Further insight was provided into the role of some environmental conditions in promoting wine spoilage.  相似文献   

7.
Aims:  To improve the efficacy of erythromycin, a hydrophobic antibiotic, against multiple antibiotic-resistant gram-negative bacterial pathogens by enhancing their outer membrane permeability.
Methods and Results:  Fifty-one nonrepeat gram-negative bacterial pathogens of various genera, resistant to multiple antibiotics, including erythromycin, were selected by disc agar diffusion tests. The amphiphilic cationic steroid antibiotic, Ceragenin CSA-13, a potent permeabilizer of bacterial outer membranes, reduced the minimum inhibitory concentration of erythromycin in 92% of the bacterial pathogens selected for the test, when supplemented with erythromycin. A synergistic effect of Ceragenin CSA-13 and erythromycin in combination was also observed. Spectrofluorimetric study confirmed that Ceragenin CSA-13 acts by depolarizing the bacterial outer membrane. The toxicity of Ceragenin CSA-13 was evaluated to be insignificant by measuring 'median lethal dose' (LD50) on mouse model.
Conclusions:  Ceragenin CSA-13 may be useful as an agent to make erythromycin effective against infections caused by multiple antibiotic resistant gram-negative bacteria.
Significance and Impact of the Study:  The outcome of the study suggests erythromycin–Ceragenin combination as a new approach to overcome the problem associated with the rapid emergence of multi-drug-resistant pathogens. The insignificant toxicity of Ceragenin CSA-13, as found, supports the possibility of the application of this compound for human therapeutics.  相似文献   

8.
Aims:  To evaluate the effectiveness of organic acids and supercritical carbon dioxide (SC-CO2) treatments as well as their combined effect for the reduction of nonpathogenic Escherichia coli and three pathogenic bacteria in fresh pork.
Methods and Results:  The different treatment conditions were as follows: (i) treatment with acetic (1%, 2% or 3%) or lactic acid (1%, 2% or 3%) only, (ii) treatment with SC-CO2 at 12 MPa and 35°C for 30 min only and (iii) treatment with 3% acetic or lactic acid followed by treatment with SC-CO2. Within the same organic acid concentration, the lactic and acetic acid treatments had similar reductions. For the combined treatment of lactic acid and SC-CO2, micro-organism levels were maximally reduced, ranging from 2·10 to 2·60 log CFU cm−2 ( E. coli , 2·58 log CFU cm−2; Listeria monocytogenes , 2·60 log CFU cm−2; Salmonella typhimurium , 2·33 log CFU cm−2; E. coli O157:H7, 2·10 log CFU cm−2).
Conclusions:  The results of this study indicate that the combined treatments of SC-CO2 and organic acids were more effective at destroying foodborne pathogens than the treatments of SC-CO2 or organic acids alone.
Significance and Impact of the Study:  The combination treatment of SC-CO2 and organic acids may be useful in the meat industry to help increase microbial safety.  相似文献   

9.
Aims:  To investigate the effect of liquid smoke on growth, survival, proteomic pattern and haemolytic potential of Listeria monocytogenes.
Methods and Results:  Growth and survival curves were recorded in brain–heart infusion broth supplemented with three concentrations of liquid smoke. L. monocytogenes growth was inhibited in the presence of 15 μg ml−1 phenol while a rapid decrease in cell viability occurred in the presence of 30 μg ml−1 phenol. The proteome of L. monocytogenes cytosoluble proteins was slightly modified after 2-h incubation with 30 μg ml−1 phenol but no protein already characterized in response to other known stresses was induced, except the protease ClpP. Liquid smoke inhibited the haemolytic potential without affecting hly gene expression, showing a potential inhibition of protein activity or stability.
Conclusions:  The presence of liquid smoke in a rich medium strongly affected growth and survival of L. monocytogenes . Brief smoke stress affected the metabolic pathways and inhibited the haemolytic activity of L. monocytogenes .
Significance and Impact of Study:  This study is a first step in the investigation of the influence of a smoked product on L. monocytogenes strains.  相似文献   

10.
1. We estimated uptake of stream water dissolved organic carbon (DOC) through a whole-stream addition of a 13C-DOC tracer coupled with laboratory measurements of bioavailability of the tracer and stream water DOC.
2. The tracer, a leachate of 13C-labelled tree tissues, was added to the head waters of White Clay Creek, Pennsylvania, U.S.A., over a 2-h period and followed 1.27 km downstream to generate mass transfer coefficients for DOC lability classes within the tracer.
3. From the longitudinal 13C uptake curve, we resolved labile and semi-labile DOC classes within the 13C-DOC tracer comprising 82% and 18% of the tracer respectively.
4. Plug-flow laboratory bioreactors colonized and maintained with stream water were used to determine the concentration of stream water DOC fractions that had a similar lability to the labile and semi-labile classes within the tracer and we assumed that stream water DOC and tracer DOC with comparable lability fractions in the bioreactors behaved similarly in the stream, i.e. they had the same mass transfer coefficients.
5. A small fraction (8.6%) of the stream water DOC was labile, travelling 238 m downstream before being taken up. The remaining bioavailable stream water DOC was semi-labile and transported 4.5 km downstream before being taken up. These uptake lengths suggest that the labile DOC is an energy source within a stream reach, while the semi-labile DOC is exported out of the reach to larger rivers and the downstream estuary, where it may provide energy for marine microbial communities or simply be exported to the oceans.  相似文献   

11.
Aims:  To investigate the effect of the biosurfactants surfactin and rhamnolipids on the adhesion of the food pathogens Listeria monocytogenes , Enterobacter sakazakii and Salmonella Enteritidis to stainless steel and polypropylene surfaces.
Methods and Results:  Quantification of bacterial adhesion was performed using the crystal violet staining technique. Preconditioning of surfaces with surfactin caused a reduction on the number of adhered cells of Ent. sakazakii and L. monocytogenes on stainless steel. The most significant result was obtained with L. monocytogenes where number of adhered cells was reduced by 102 CFU cm−2. On polypropylene, surfactin showed a significant decrease on the adhesion of all strains. The adsorption of surfactin on polystyrene also reduces the adhesion of L. monocytogenes and Salm. Enteritidis growing cells. For short contact periods using nongrowing cells or longer contact periods with growing cells, surfactin was able to delay bacterial adhesion.
Conclusions:  The prior adsorption of surfactin to solid surfaces contributes on reducing colonization of the pathogenic bacteria.
Significance and Impact of the Study:  This is the first work investigating the effect of surfactin on the adhesion of the food pathogens L. monocytogenes , Ent. sakazakii and Salm. Enteritidis to polypropylene and stainless steel surfaces.  相似文献   

12.
Aims:  To isolate a biosurfactant-producing bacterial strain and to identify and characterize the chemical structure and properties of its biosurfactants.
Methods and Results:  The bacterium Rhodococcus wratislaviensis BN38, isolated from soil, was found to produce glycolipid biosurfactants when grown on 2% n -hexadecane. The glycolipids were isolated by chromatography on silica gel columns and their structures elucidated using a combination of multidimensional NMR and ESI-MS/MS techniques. The main product was identified as 2,3,4,2'-trehalose tetraester with molecular mass of 876 g mol−1. It was also noted that the biosurfactant was produced under nitrogen-limiting conditions and could not be synthesized from water-soluble substrates. The purified product showed extremely high surface-active properties.
Conclusions:  The glycolipid biosurfactant produced by the alkanothrophic strain R. wratislaviensis BN38 was characterized to be 2,3,4,2'-trehalose tetraester which exhibited high surfactant activities.
Significance and Impact of the Study:  Strain BN38 of R. wratislaviensis is a potential candidate for use in bioremediation applications or in biosurfactant exploration.  相似文献   

13.
1. The underwater light climate and benthic moss communities of Grane Langsø were investigated in May 1997 to determine the potential effects on benthic production of changing water column attenuation and spectral quality of light.
2. A reduction in water clarity in the lake since the 1960s was manifested as a marked increase in the attenuation of blue light, relative to red light, which can be attributed to increased dissolved organic carbon.
3. The biomass of the benthic moss community ranged from a maximum of 195 gDW m−2 at a depth of 4 m to 39 g DW m−2 at a depth of 10 m and Drepanocladus exannulatus contributed 70% of the biomass at all depths.
4. Absorption of PAR by D. exannulatus was maximal in the highly pigmented youngest parts of the plant and these correspondingly showed the highest rates of net photosynthesis. The absolute amount of chlorophyll- a per g dry weight was greater at 10 m than 2 m, but the ratio of accessory pigments to chlorophyll- a did not change. Deep growing plants did not show adaptation to changed light quality.
5. Increased attenuation of blue light and the resultant overall decrease in water clarity is likely to impact negatively on net annual production of benthic macrophytes of Grane Langsø. Any further increase in dissolved organic carbon concentration has the potential to markedly decrease the depth to which mosses grow by reducing the length of time in a year during which net photosynthesis occurs.  相似文献   

14.
Aims:  Evaluation of bactericidal effect of different concentrations of ozone when used (a) as a gas, or (b) dissolved in saline. The addition of hydrogen peroxide or 4-hydroxynonenal dissolved in saline was also tested, as well as the effect of human plasma.
Methods and Results:  Staphylococcus aureus , methicillin-resistant Staph. aureus (MRSA), and Pseudomonas aeruginosa , suspended in their culture media were tested. While all bacteria suspended in protein-free saline were killed at high ozone concentrations, they survived when as little as 5% human plasma was present. Hydrogen peroxide was 100-fold less active than ozone and needed to remain in contact with bacteria for at least 60 min. 4-hydroxynonenal (2 μmol l−1) was inhibitory for proliferation of both Staph. aureus and MRSA, but not for Ps. aeruginosa .
Conclusions:  Ozone and the cascade of its derivative products are potent bactericidal agents, but even small amounts of human plasma, hence of hydro- and liposoluble antioxidants, in bacterial suspensions inhibit oxidation and protect bacteria.
Significance and Impact of the Study:  Any substantial in vivo cytocidal effect of ozone and its derivatives can be excluded. On the other hand, topical and continuous action of various ozone preparations remains valuable in a variety of skin and mucosal infections.  相似文献   

15.
Aims:  To quantify the phytotoxicity and effect of alternative seed treatments based on acidified nitrite and elicitors of plant resistance (Tillekur and Chitosan) against seed-borne inocula of Didymella lycopersici .
Methods and Results:  Treatments tested were: nitrite [sodium nitrite in citric acid buffer (pH 2)] at 30, 100 and 300 mmol l−1 and three exposure times (10, 20 and 30 min); Tillekur (in water) at 12·5, 25, 50, 100 and 200 mg ml−1; Chitosan (in 0·05% acetic acid) at 2·5, 5, 10 and 50 mg ml−1. Efficacy of treatments was determined in growth chamber experiments. Nitrite at 300 mmol l−1 was completely effective, as was the fungicide, at controlling disease when applied for less than 20 min. Tillekur was as effective as the fungicide postemergence, but proved to be phytotoxic pre-emergence. Chitosan was significantly less effective than the other treatments.
Conclusions:  The high efficacy and low cost of acidified nitrite indicates that it is a suitable alternative to fungicides.
Significance and Impact of the Study:  There is currently a lack of effective seed treatments that can be used in organic and low-input crops. Treatments identified in this study can be considered as an effective alternative to chemical control against seed-borne fungal pathogens.  相似文献   

16.
The biodegradation of phenanthrene by the biosurfactant-producing strain Pseudomonas aeruginosa 19SJ was investigated in experiments with the compound present either as crystals or dissolved in non-aqueous phase liquids (NAPLs). Growth on solid phenanthrene exhibited an initial phase not limited by dissolution rate and a subsequent, carbon-limited phase caused by exhaustion of the carbon source. Rhamnolipid biosurfactants were produced from solid phenanthrene and appeared in solution and particulate material (cells and phenanthrene crystals). During the carbon-limited phase, the concentration of rhamnolipids detected in culture exceeded the critical micelle concentration (CMC) determined with purified rhamnolipids. The biosurfactants caused a significant increase in dissolution rate and pseudosolubility of phenanthrene, but only at concentrations above the CMC. Externally added rhamnolipids at a concentration higher than the CMC increased the biodegradation rate of solid phenanthrene. Mineralization curves of low concentrations of phenanthrene initially dissolved in two NAPLs [2,2,4,4,6,8,8-heptamethylnonane and di(2-ethylhexyl)phthalate] were S-shaped, although no growth was observed in the population of suspended bacteria. Biosurfactants were not detected in solution under these conditions. The observed mineralization was attributed not only to suspended bacteria, but also to bacterial populations growing at the NAPL–water interface, mineralizing the compound at higher rates than predicted by abiotic partitioning. We suggest that rhamnolipid production and attachment increased the bioavailability of phenanthrene, so promoting biodegradation activity.  相似文献   

17.
Aims:  To evaluate the effect of tetradecyltrimethylammonium bromide (TTAB) and aluminium stresses on the phospholipid (PL) composition of Pseudomonas putida A ATCC 12633.
Methods and Results:  Pseudomonas putida were grown with TTAB in the presence or absence of AlCl3, and the PL composition was analysed. The presence of TTAB resulted in an increase in phosphatidylglycerol and phosphatidic acid levels (6- and 20-fold, respectively) with respect to the levels in cells grown without the surfactant. With AlCl3, phosphatidylcholine (PC) increased (threefold) and cell-free extracts contained approximately threefold more phosphatidylcholine synthase activities than extracts without AlCl3, indicating that the PC level is dependent upon activation of this enzyme.
Conclusions:  The negative charges of the headgroups of PL are the primary membrane-associated factors for the response to TTAB. PC are involved in cellular responses to binding Al3+ and should be viewed as a temporary reservoir of available Al3+ to allow a more efficient utilization of TTAB by Ps. putida .
Significance and Impact of the Study:  The changes in the PL of Ps. putida in the presence of TTAB and AlCl3 indicate that different responses are utilized by bacteria to maintain optimal PL composition in the presence of such environmental pollutants.  相似文献   

18.
Aims:  To investigate the factors affecting benzene biodegradation and microbial community composition in a contaminated aquifer.
Methods and Results:  We identified the microbial community in groundwater samples from a benzene-contaminated aquifer situated below a petrochemical plant. Eleven out of twelve groundwater samples with in situ dissolved oxygen concentrations between 0 and 2·57 mg l−1 showed benzene degradation in aerobic microcosm experiments, whereas no degradation in anaerobic microcosms was observed. The lack of aerobic degradation in the remaining microcosm could be attributed to a pH of 12·1. Three groundwaters, examined by 16S rRNA gene clone libraries, with low in situ oxygen concentrations and high benzene levels, each had a different dominant aerobic (or denitrifying) population, either Pseudomonas , Polaromonas or Acidovorax species. These groundwaters also had syntrophic organisms, and aceticlastic methanogens were detected in two samples. The alkaline groundwater was dominated by organisms closely related to Hydrogenophaga .
Conclusions:  Results show that pH 12·1 is inimical to benzene biodegradation, and that oxygen concentrations below 0·03 mg l−1 can support aerobic benzene-degrading communities.
Significance and Impact of the Study:  These findings will help to guide the treatment of contaminated groundwaters, and raise questions about the extent to which aerobes and anaerobes may interact to effect benzene degradation.  相似文献   

19.
Aims:  To study the efficacy of the lytic phage φS1 in eliminating Pseudomonas fluorescens in the early stage of biofilm formation, using an in situ and real time methodology for cell quantification.
Methods and Results:  Cell adhesion and phage infection studies were carried out in a parallel plate flow chamber under laminar conditions. Cells were allowed to adhere until reaching 1·7–1·8 × 106 cells cm−2 and phage infection was performed with two different phage concentrations (2 × 109 PFU ml−1 and 1 × 1010 PFU ml−1). Phage concentration clearly affects the speed of infection. The less concentrated phage solution promoted a three times slower rate of cell removal but did not affect the overall percentage of cell removal. In fact, after a longer infection period the less concentrated phage solution reached the same 93% cell removal value.
Conclusions:  Phages are efficient in the eradication of bacterial cells at the early stage of biofilm formation and their presence at the surface did not allow bacterial recolonization of the surface.
Significance and Impact of the Study:  To date, no published studies have been made concerning in situ and real time quantification of cell removal from surfaces due to phage action.  相似文献   

20.
Aims:  The aims of this study were to optimize condensed corn solubles (CCS) as a medium for growth of Ralstonia eutropha and to determine the effects of individual volatile fatty acids (VFAs) on polyhydroxyalkanoate (PHA) production .
Methods and Results:  A CCS medium of concentration 240 g l−1 with a carbon : nitrogen ratio of 50 : 1 was developed as the optimal medium. Cultures were grown in 1-l aerated flasks at 250 rev min−1 at 30°C for 120 h. Comparable growth rates were observed in CCS vs a defined medium. At 48 h, VFAs were fed individually at different levels. Optimal levels of all the acids were determined to maximize PHA production. An overall comparison of the VFAs indicated that butyric and propionic acids provided the best results.
Conclusion:  An optimized CCS medium supported growth of R. eutropha . Butyric and propionic acids were the most efficient carbon sources to maximize PHA production when added at the 5 g l−1 level.
Significance and Impact of the Study:  The study shows that a byproduct of ethanol industry can be effectively used as a low cost medium for PHA production, thus partly reducing the cost of commercialization of biopolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号