首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bateman JM  Perlman PS  Butow RA 《Genetics》2002,161(3):1043-1052
Ilv5p is a bifunctional yeast mitochondrial enzyme required for branched chain amino acid biosynthesis and for the stability of mitochondrial DNA (mtDNA) and its parsing into nucleoids. The latter occurs when the general amino acid control (GAC) pathway is activated. We have isolated ilv5 mutants that lack either the enzymatic (a(-)D(+)) or the mtDNA stability function (a(+)D(-)) of the protein. The affected residues in these two mutant classes cluster differently when mapped to the 3-D structure of the spinach ortholog of Ilv5p. a(-)D(+) mutations map to conserved internal domains known to be important for substrate and cofactor binding, whereas the a(+)D(-) mutations map to a C-terminal region on the surface of the protein. The a(+)D(-) mutants also have a temperature-sensitive phenotype when grown on a glycerol medium, which correlates with their degree of mtDNA instability. Analysis of an a(+)D(-) mutant with a strong mtDNA instability phenotype shows that it is also unable to parse mtDNA into nucleoids when activated by the GAC pathway. Finally, the wild-type Escherichia coli ortholog of Ilv5p behaves like a(+)D(-) mutants when expressed and targeted to mitochondria in ilv5Delta yeast cells, suggesting that yeast Ilv5p acquired its mtDNA function after the endosymbiotic event.  相似文献   

2.
Mitochondrial DNA (mtDNA) is inherited as a protein-DNA complex (the nucleoid). Proteins associated with the nucleoid are not only components directly involved in maintenance and propagation of mtDNA but can also be bi-functional enzymes whose metabolic activities are not directly related to mtDNA stability. In the yeast Saccharomyces cerevisiae, one such enzyme, Ilv5p is required for branch chain amino acid biosynthesis but also associates with the nucleoid. Deletions of ILV5 lead not only to metabolic defects but also to destabilization of mtDNA. Further, minor overproduction of Ilv5p stabilizes mtDNA in strains lacking Abf2p, a major mtDNA binding and packaging protein. Here we show that Ilv5p binds double-stranded DNA in vitro and is unaffected by the presence of saturating concentrations of Abf2p. In cells lacking Abf2p the amount of Ilv5p associated with the nucleoid increases significantly and is proportional to the mitochondrial concentration of Ilv5p. Altogether, we conclude that direct binding of Ilv5p can aid in the maintenance and stabilization of mtDNA.  相似文献   

3.
Mitochondrial DNA (mtDNA) is inherited as a protein-DNA complex (the nucleoid). We show that activation of the general amino acid response pathway in rho(+) and rho(-) petite cells results in an increased number of nucleoids without an increase in mtDNA copy number. In rho(-) cells, activation of the general amino acid response pathway results in increased intramolecular recombination between tandemly repeated sequences of rho(-) mtDNA to produce small, circular oligomers that are packaged into individual nucleoids, resulting in an approximately 10-fold increase in nucleoid number. The parsing of mtDNA into nucleoids due to general amino acid control requires Ilv5p, a mitochondrial protein that also functions in branched chain amino acid biosynthesis, and one or more factors required for mtDNA recombination. Two additional proteins known to function in mtDNA recombination, Abf2p and Mgt1p, are also required for parsing mtDNA into a larger number of nucleoids, although expression of these proteins is not under general amino acid control. Increased nucleoid number leads to increased mtDNA transmission, suggesting a mechanism to enhance mtDNA inheritance under amino acid starvation conditions.  相似文献   

4.
Zuo XM  Clark-Walker GD  Chen XJ 《Genetics》2002,160(4):1389-1400
The Saccharomyces cerevisiae MGM101 gene encodes a DNA-binding protein targeted to mitochondrial nucleoids. MGM101 is essential for maintenance of a functional rho(+) genome because meiotic segregants, with a disrupted mgm101 allele, cannot undergo more than 10 divisions on glycerol medium. Quantitative analysis of mtDNA copy number in a rho(+) strain carrying a temperature-sensitive allele, mgm101-1, revealed that the amount of mtDNA is halved each cell division upon a shift to the restrictive temperature. These data suggest that mtDNA replication is rapidly blocked in cells lacking MGM101. However, a small proportion of meiotic segregants, disrupted in MGM101, have rho(-) genomes that are stably maintained. Interestingly, all surviving rho(-) mtDNAs contain an ori/rep sequence. Disruption of MGM101 in hypersuppressive (HS) strains does not have a significant effect on the propagation of HS rho(-) mtDNA. However, in petites lacking an ori/rep, disruption of MGM101 leads to either a complete loss or a dramatically decreased stability of mtDNA. This discriminatory effect of MGM101 suggests that replication of rho(+) and ori/rep-devoid rho(-) mtDNAs is carried out by the same process. By contrast, the persistence of ori/rep-containing mtDNA in HS petites lacking MGM101 identifies a distinct replication pathway. The alternative mtDNA replication mechanism provided by ori/rep is independent of mitochondrial RNA polymerase encoded by RPO41 as a HS rho(-) genome is stably maintained in a mgm101, rpo41 double mutant.  相似文献   

5.
The yeast mitochondrial high mobility group protein Abf2p is required, under certain growth conditions, for the maintenance of wild-type (rho+) mitochondrial DNA (mtDNA). We have identified a multicopy suppressor of the mtDNA instability phenotype of cells with a null allele of the ABF2 gene (delta abf2). The suppressor is a known gene, ILV5, encoding the mitochondrial protein, acetohydroxy acid reductoisomerase, which catalyzes a step in branched-chain amino acid biosynthesis. Efficient suppression occurs with just a 2- to 3-fold increase in ILV5 copy number. Moreover, in delta abf2 cells with a single copy of ILV5, changes in mtDNA stability correlate directly with changes in conditions that are known to affect ILV5 expression. Wild-type mtDNA is unstable in cells with an ILV5 null mutation (delta ilv5), leading to the production of mostly rho- petite mutants. The instability of rho+ mtDNA in delta ilv5 cells is not simply a consequence of a block in branched-chain amino acid biosynthesis, since mtDNA is stable in cells with a null allele of the ILV2 gene, which encodes another enzyme of that pathway. The most severe instability of rho+ mtDNA is observed in cells with null alleles of both ABF2 and ILV5. We suggest that ILV5 encodes a bifunctional protein required for branched-chain amino acid biosynthesis and for the maintenance of rho+ mtDNA.  相似文献   

6.
Previous studies indicate that two proteins, Mmm1p and Mdm10p, are required to link mitochondria to the actin cytoskeleton of yeast and for actin-based control of mitochondrial movement, inheritance and morphology. Both proteins are integral mitochondrial outer membrane proteins. Mmm1p localizes to punctate structures in close proximity to mitochondrial DNA (mtDNA) nucleoids. We found that Mmm1p and Mdm10p exist in a complex with Mdm12p, another integral mitochondrial outer membrane protein required for mitochondrial morphology and inheritance. This interpretation is based on observations that 1) Mdm10p and Mdm12p showed the same localization as Mmm1p; 2) Mdm12p, like Mdm10p and Mmm1p, was required for mitochondrial motility; and 3) all three proteins coimmunoprecipitated with each other. Moreover, Mdm10p localized to mitochondria in the absence of the other subunits. In contrast, deletion of MMM1 resulted in mislocalization of Mdm12p, and deletion of MDM12 caused mislocalization of Mmm1p. Finally, we observed a reciprocal relationship between the Mdm10p/Mdm12p/Mmm1p complex and mtDNA. Deletion of any one of the subunits resulted in loss of mtDNA or defects in mtDNA nucleoid maintenance. Conversely, deletion of mtDNA affected mitochondrial motility: mitochondria in cells without mtDNA move 2-3 times faster than mitochondria in cells with mtDNA. These observations support a model in which the Mdm10p/Mdm12p/Mmm1p complex links the minimum heritable unit of mitochondria (mtDNA and mitochondrial outer and inner membranes) to the cytoskeletal system that drives transfer of that unit from mother to daughter cells.  相似文献   

7.
DNA-protein complexes (nucleoids) are believed to be the segregating unit of mitochondrial DNA (mtDNA) in Saccharomyces cerevisiae. A mitochondrial HMG box protein, Abf2p, is needed for maintenance of mtDNA in cells grown on rich dextrose medium, but is dispensible in glycerol grown cells. As visualized by 4',6'-diamino-2-phenylindole staining, mtDNA nucleoids in mutant cells lacking Abf2p ( delta abf2) are diffuse compared with those in wild-type cells. We have isolated mtDNA nucleoids and characterized two mtDNA-protein complexes, termed NCLDp-2 and NCLDs-2, containing distinct but overlapping sets of polypeptides. This protocol yields similar nucleoid complexes from the delta abf2 mutant, although several proteins appear lacking from NCLDs-2. Segments of mtDNA detected with probes to COXII, VAR1 and ori5 sequences are equally sensitive to DNase I digestion in NCLDs-2 and NCLDp-2 from wild-type cells and from the delta abf2 mutant. However, COXII and VAR1 sequences are 4-to 5-fold more sensitive to DNase I digestion of mtDNA in toluene-permeabilized mitochondria from the delta abf2 mutant than from wild-type cells, but no difference in DNase I sensitivity was detected with the ori5 probe. These results provide a first indication that Abf2p influences differential organization of mtDNA sequences.  相似文献   

8.
9.
The dynamin-related GTPase, Mgm1p, is critical for the fusion of the mitochondrial outer membrane, maintenance of mitochondrial DNA (mtDNA), formation of normal inner membrane structures, and inheritance of mitochondria. Although there are two forms of Mgm1p, 100 and 90 kDa, their respective functions and the mechanism by which these two forms are produced are not clear. We previously isolated ugo2 mutants in a genetic screen to identify components involved in mitochondrial fusion [J. Cell Biol. 152 (2001) 1123]. In this paper, we show that ugo2 mutants are defective in PCP1, a gene encoding a rhomboid-related serine protease. Cells lacking Pcp1p are defective in the processing of Mgm1p and produce only the larger (100 kDa) form of Mgm1p. Similar to mgm1delta cells, pcp1delta cells contain partially fragmented mitochondria, instead of the long tubular branched mitochondria of wild-type cells. In addition, pcp1delta cells, like mgm1delta cells, lack mtDNA and therefore are unable to grow on nonfermentable medium. Mutations in the catalytic domain lead to complete loss of Pcp1p function. Similar to mgm1delta cells, the fragmentation of mitochondria and loss of mtDNA of pcp1delta cells were rescued when mitochondrial division was blocked by inactivating Dnm1p, a dynamin-related GTPase. Surprisingly, in contrast to mgm1delta cells, which are completely defective in mitochondrial fusion, pcp1delta cells can fuse their mitochondria after yeast cell mating. Our study demonstrates that Pcp1p is required for the processing of Mgm1p and controls normal mitochondrial shape and mtDNA maintenance by producing the 90 kDa form of Mgm1p. However, the processing of Mgm1p is not strictly required for mitochondrial fusion, indicating that the 100 kDa form is sufficient to promote fusion.  相似文献   

10.
The role of nuclear DNA (nDNA)-encoded proteins in the regulation of mitochondrial fission and fusion has been documented, yet the role of mitochondrial DNA (mtDNA) and encoded proteins in mitochondrial biogenesis remains unknown. Long-term treatment of a lymphoblastoid cell line Molt-4 with ethidium bromide generated mtDNA-deficient rho0 mutants. Depletion of mtDNA in rho0 cells produced functional and morphological changes in mitochondria without affecting the nuclear genome and encoded proteins. Indeed, the gene encoding subunit II of mitochondrial cytochrome c oxidase (COX II), a prototypical mitochondrial gene, was reduced in rho0 mutants blunting the activity of mitochondrial cytochrome coxidase. Yet, the amount of the nuclear beta-actin gene and the activity of citrate synthase, a mitochondrial matrix enzyme encoded by nDNA, remained unaffected in rho0 cells. Loss of mtDNA in rho0 cells was associated with significant distortion of mitochondrial structure, decreased electron density of the matrix and disorganized inner and outer membranes, resulting in the appearance of 'ghost-like' mitochondria. However, the number of mitochondria-like structures was not significantly different between mtDNA-deficient and parental cells. Thus, we conclude that cells lacking mtDNA still generate mitochondrial scaffolds, albeit with aberrant function.  相似文献   

11.
rho 0 HeLa cells entirely lacking mitochondrial DNA (mtDNA) and mitochondrial transfection techniques were used to examine intermitochondrial interactions between mitochondria with and without mtDNA, and also between those with wild-type (wt) and mutant-type mtDNA in living human cells. First, unambiguous evidence was obtained that the DNA-binding dyes ethidium bromide (EtBr) and 4',6-diamidino-2- phenylindole (DAPI) exclusively stained mitochondria containing mtDNA in living human cells. Then, using EtBr or DAPI fluorescence as a probe, mtDNA was shown to spread rapidly to all rho 0 HeLa mitochondria when EtBr- or DAPI-stained HeLa mitochondria were introduced into rho 0 HeLa cells. Moreover, coexisting wt-mtDNA and mutant mtDNA with a large deletion (delta-mtDNA) were shown to mix homogeneously throughout mitochondria, not to remain segregated by use of electron microscopic analysis of cytochrome c oxidase activities of individual mitochondria as a probe to identify mitochondria with predominantly wt- or delta- mtDNA in single cells. This rapid diffusion of mtDNA and the resultant homogeneous distribution of the heteroplasmic wt- and delta-mtDNA molecules throughout mitochondria in a cell suggest that the mitochondria in living human cells have lost their individuality. Thus, the actual number of mitochondria per cell is not of crucial importance, and mitochondria in a cell should be considered as a virtually single dynamic unit.  相似文献   

12.
Vicinal diketones (VDK) cause butter-like off-flavors in beer and are formed by a non-enzymatic oxidative decarboxylation of α-aceto-α-hydroxybutyrate and α-acetolactate, which are intermediates in isoleucine and valine biosynthesis taking place in the mitochondria. On the assumption that part of α-acetolactate can be formed also in the cytosol due to a mislocalization of the responsible acetohydroxyacid synthase encoded by ILV2 and ILV6, functional expression in the cytosol of acetohydroxyacid reductoisomerase (Ilv5p) was explored. Using the cytosolic Ilv5p, I aimed to metabolize the cytosolically formed α-aetolactate, thereby lowering the total VDK production. Among mutant Ilv5p enzymes with varying degrees of N-terminal truncation, one with a 46-residue deletion (Ilv5pΔ46) exhibited an unequivocal localization in the cytosol judged from microscopy of the Ilv5pΔ46-green fluorescent protein fusion protein and the inability of Ilv5pΔ46 to remedy the isoleucine/valine requirement of an ilv5Δ strain. When introduced into an industrial lager brewing strain, a robust expression of Ilv5pΔ46 was as effective as that of a wild-type Ilv5p in lowering the total VDK production in a 2-l scale fermentation trial. Unlike the case of the wild-type Ilv5p, an additional expression of Ilv5pΔ46 did not alter the quality of the resultant beer in terms of contents of aromatic compounds and organic acids.  相似文献   

13.
Within the mitochondrial F(1)F(0)-ATP synthase, the nucleus-encoded delta-F(1) subunit plays a critical role in coupling the enzyme proton translocating and ATP synthesis activities. In Saccharomyces cerevisiae, deletion of the delta subunit gene (Deltadelta) was shown to result in a massive destabilization of the mitochondrial genome (mitochondrial DNA; mtDNA) in the form of 100% rho(-)/rho degrees petites (i.e. cells missing a large portion (>50%) of the mtDNA (rho(-)) or totally devoid of mtDNA (rho degrees )). Previous work has suggested that the absence of complete mtDNA (rho(+)) in Deltadelta yeast is a consequence of an uncoupling of the ATP synthase in the form of a passive proton transport through the enzyme (i.e. not coupled to ATP synthesis). However, it was unclear why or how this ATP synthase defect destabilized the mtDNA. We investigated this question using a nonrespiratory gene (ARG8(m)) inserted into the mtDNA. We first show that retention of functional mtDNA is lethal to Deltadelta yeast. We further show that combined with a nuclear mutation (Deltaatp4) preventing the ATP synthase proton channel assembly, a lack of delta subunit fails to destabilize the mtDNA, and rho(+) Deltadelta cells become viable. We conclude that Deltadelta yeast cannot survive when it has the ability to synthesize the ATP synthase proton channel. Accordingly, the rho(-)/rho degrees mutation can be viewed as a rescuing event, because this mutation prevents the synthesis of the two mtDNA-encoded subunits (Atp6p and Atp9p) forming the core of this channel. This is the first report of what we have called a "petite obligate" mutant of S. cerevisiae.  相似文献   

14.
15.
Instability of the mitochondrial genome (mtDNA) is a general problem from yeasts to humans. However, its genetic control is not well documented except in the yeast Saccharomyces cerevisiae. From the discovery, 50 years ago, of the petite mutants by Ephrussi and his coworkers, it has been shown that more than 100 nuclear genes directly or indirectly influence the fate of the rho(+) mtDNA. It is not surprising that mutations in genes involved in mtDNA metabolism (replication, repair, and recombination) can cause a complete loss of mtDNA (rho(0) petites) and/or lead to truncated forms (rho(-)) of this genome. However, most loss-of-function mutations which increase yeast mtDNA instability act indirectly: they lie in genes controlling functions as diverse as mitochondrial translation, ATP synthase, iron homeostasis, fatty acid metabolism, mitochondrial morphology, and so on. In a few cases it has been shown that gene overexpression increases the levels of petite mutants. Mutations in other genes are lethal in the absence of a functional mtDNA and thus convert this petite-positive yeast into a petite-negative form: petite cells cannot be recovered in these genetic contexts. Most of the data are explained if one assumes that the maintenance of the rho(+) genome depends on a centromere-like structure dispensable for the maintenance of rho(-) mtDNA and/or the function of mitochondrially encoded ATP synthase subunits, especially ATP6. In fact, the real challenge for the next 50 years will be to assemble the pieces of this puzzle by using yeast and to use complementary models, especially in strict aerobes.  相似文献   

16.
A novel protein family (p14.5, or YERO57c/YJGFc) highly conserved throughout evolution has recently been identified. The biological role of these proteins is not yet well characterized. Two members of the p14.5 family are present in the yeast Saccharomyces cerevisiae. In this study, we have characterized some of the biological functions of the two yeast proteins. Mmf1p is a mitochondrial matrix factor, and homologous Mmf1p factor (Hmf1p) copurifies with the soluble cytoplasmic fraction. Deltammf1 cells lose mitochondrial DNA (mtDNA) and have a decreased growth rate, while Deltahmf1 cells do not display any visible phenotype. Furthermore, we demonstrate by genetic analysis that Mmf1p does not play a direct role in replication and segregation of the mtDNA. rho(+) Deltammf1 haploid cells can be obtained when tetrads are directly dissected on medium containing a nonfermentable carbon source. Our data also indicate that Mmf1p and Hmf1p have similar biological functions in different subcellular compartments. Hmf1p, when fused with the Mmf1p leader peptide, is transported into mitochondria and is able to functionally replace Mmf1p. Moreover, we show that homologous mammalian proteins are functionally related to Mmf1p. Human p14.5 localizes in yeast mitochondria and rescues the Deltammf1-associated phenotypes. In addition, fractionation of rat liver mitochondria showed that rat p14.5, like Mmf1p, is a soluble protein of the matrix. Our study identifies a biological function for Mmf1p and furthermore indicates that this function is conserved between members of the p14.5 family.  相似文献   

17.
Yeast mitochondrial division requires the dynamin-related Dnm1 protein. By isolating high-copy suppressors of a dominant-negative Dnm1p mutant, we uncovered an unexpected role in mitochondrial division and inheritance for Num1p, a protein previously shown to facilitate nuclear migration. num1 mutants contain an interconnected network of mitochondrial tubules, remarkably similar to cells lacking Dnm1p, and time-lapse microscopy confirms that mitochondrial fission is greatly reduced in num1Delta cells. We also find that Num1p assembles into punctate structures, which often colocalize with mitochondrial-bound Dnm1p particles. Suggesting a role for both Num1p and Dnm1p in mitochondrial inheritance, we find that num1 dnm1 double mutants accumulate mitochondria in daughter buds and that mother cells are frequently devoid of all mitochondria. Thus, our studies have revealed an additional role for Dnm1p in mitochondrial transmission through its interaction with Num1p, thereby providing a link between mitochondrial division and inheritance.  相似文献   

18.
Previous studies on certain altered holo-isocytochromes c revealed a rho(-)-dependent degradation (RDD) phenotype, in which certain altered holo-iso-1-cytochromes c are at normal or nearly normal levels in rho+ strains, but are at low levels or absent in rho- strains, although wild-type holo-iso-1-cytochrome c is present at normal levels in both rho+ and related rho- strains. The diminished levels of altered holo-iso-1-cytochrome c are due to the rapid degradation that is carried out by a novel proteolytic pathway in the IMS of mitochondria. SUE1, a nuclear gene that encodes a mitochondrial protein, was identified with a genetic screen for mutants that diminish RDD. The levels of RDD and certain other types of altered holo-iso-1-cytochrome c were elevated in rho- sue1 strains. Also, rho+ sue1 strains containing certain altered holo-iso-1-cytochromes c grew better on non-fermentable carbon sources than the corresponding rho+ SUE1 strains. These results indicate that Sue1p may play an important role in the degradation of abnormal holo-iso-1-cytochrome c in the mitochondria.  相似文献   

19.
Two linear killer plasmids (pGKL1 and pGKL2) from Kluyveromyces lactis stably replicated and expressed the killer phenotype in a neutral petite mutant [( rho0]) of Saccharomyces cerevisiae. However, when cytoplasmic components were introduced by cytoduction from a wild-type [( rho+]) strain of S. cerevisiae, the linear plasmids became unstable and were frequently lost from the cytoductant cells during mitosis, giving rise to nonkiller clones. The phenomenon was ascribed to the incompatibility with the introduced S. cerevisiae mitochondrial DNA (mtDNA), because the plasmid stability was restored by [rho0] mutations in the cytoductant cells. Incompatibility with mtDNA was also apparent for the transmission of plasmids into diploid progeny in crosses between killer cells carrying the pGKL plasmids and [rho+] nonkiller cells lacking the plasmids. High-frequency transmission of the plasmids was observed in crosses lacking mtDNA [( rho0] by [rho0] crosses) and in crosses involving mutated mtDNA with large deletions of various regions of mitochondrial genome. In contrast, mutated mtDNA from various mit- mutations also exerted the incompatibility effect on the transmission of plasmids. Double-stranded RNA killer plasmids were stably maintained and transmitted in the presence of wild-type mtDNA and stably coexisted with pGKL killer plasmids in [rho0] cells of S. cerevisiae.  相似文献   

20.
Conformational stability of the p53 protein is an absolute necessity for its physiological function as a tumor suppressor. Recent in vitro studies have shown that wild-type p53 is a highly temperature-sensitive protein at the structural and functional levels. Upon heat treatment at 37 degrees C, p53 loses its wild-type (PAb1620(+)) conformation and its ability to bind DNA, but can be stabilized by different classes of ligands. To further investigate the thermal instability of p53, we isolated p53 mutants resistant to heat denaturation. For this purpose, we applied a recently developed random mutagenesis technique called DNA shuffling and screened for p53 variants that could retain reactivity to the native conformation-specific anti-p53 antibody PAb1620 upon thermal treatment. After three rounds of mutagenesis and screening, mutants were isolated with the desired phenotype. The isolated mutants were translated in vitro in either Escherichia coli or rabbit reticulocyte lysate and characterized biochemically. Mutational analysis identified 20 amino acid residues in the core domain of p53 (amino acids 101-120) responsible for the thermostable phenotype. Furthermore, the thermostable mutants could partially protect the PAb1620(+) conformation of tumor-derived p53 mutants from thermal unfolding, providing a novel approach for restoration of wild-type structure and possibly function to a subset of p53 mutants in tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号