首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Phospholipase D     
Phospholipase D catalyses the hydrolysis of phosphatidylcholine to generate phosphatidate. The regulation of PLD activity is complex involving a number of small GTP binding proteins, but in particular Arf and Rho, phosphatidylinositol 4,5-bisphosphate and protein kinase C. The cDNA for PLD1 has recently been cloned and shows homology to the yeast and plant genes but only within four domains. Domains I and IV each contain a putative catalytic triad. PLD activity has been detected in plasma membranes, Golgi membranes and in nuclear membranes; it is unclear if different isoenzymes are responsible for this variation, or if the PLDs are differently regulated. The product of PLD activity, PA, appears to be a messenger molecule regulating the actin cytoskeleton and maybe playing a role in the control of membrane traffic and secretion.  相似文献   

5.
Phospholipase D (PLD) activity has been implicated in several aspects of cell physiology including vesicle transport, signal transduction, cell proliferation, cytoskeletal structure, and oncogenic transformation. Two PLD isoforms (PLD1 and PLD2) have been identified and characterized. We have expressed both wild-type and catalytically inactive forms of PLD1 and PLD2 in 3Y1 rat fibroblasts and in 3Y1 cells transformed by v-Src, a tyrosine kinase that elevates PLD activity. The v-Src-transformed 3Y1 cells have small, but distinct cell protrusions, implicated in cell migration and metastasis. We report here that elevated expression of PLD2 substantially increased the length of the cell protrusions and that a catalytically inactive PLD2 mutant abolished the cell protrusions. The extended protrusions in the PLD2-overexpressing cells were dependent upon microtubule assembly. These data suggest a role for PLD2 in the v-Src-mediated formation of cell protrusions that may be critical for the invasive properties of v-Src-transformed cells.  相似文献   

6.
植物中的磷脂酶D   总被引:4,自引:1,他引:4  
介绍了植物磷脂酶D(PLD)的生化性质、克隆、基因组结构、氨基酸序列结构、活性调控、信号转导和细胞生理功能的研究进展.  相似文献   

7.
Membrane fusion remains one of the less well-understood processes in cell biology. A variety of mechanisms have been proposed to explain how the generation of fusogenic lipids at sites of exocytosis facilitates secretion in mammalian cells. Over the last decade, chromaffin cells have served as an important cellular model to demonstrate a key role for phospholipase D1 (PLD1) generated phosphatidic acid in regulated exocytosis. The current model proposes that phosphatidic acid plays a biophysical role, generating a negative curvature and thus promoting fusion of secretory vesicles with the plasma membrane. Moreover, multiple signaling pathways converging on PLD1 regulation have been unraveled in chromaffin cells, suggesting a complex level of regulation dependant on the physiological context.  相似文献   

8.
Rat blood platelets show phospholipase A2 activities twenty times higher than human platelets. The breakdown of PE at pH 7.2 is linear for 15 minutes. There is no degradation at pH less than 5; the maximal activity is in the pH range 5.5-7.5. The presence of Ca2+ increases the phospholipase activity; an excess is not inhibitory. The optimal activity is obtained with 16 microM substrate concentration. Substrate inhibition is observed when the concentration exceeds 25 microM.  相似文献   

9.
Phospholipase D.     
Phospholipase D catalyses the hydrolysis of the phosphodiester bond of glycerophospholipids to generate phosphatidic acid and a free headgroup. Phospholipase D activities have been detected in simple to complex organisms from viruses and bacteria to yeast, plants, and mammals. Although enzymes with broader selectivity are found in some of the lower organisms, the plant, yeast, and mammalian enzymes are selective for phosphatidylcholine. The two mammalian phospholipase D isoforms are regulated by protein kinases and GTP binding proteins of the ADP-ribosylation and Rho families. Mammalian and yeast phospholipases D are also potently stimulated by phosphatidylinositol 4,5-bisphosphate. This review discusses the identification, characterization, structure, and regulation of phospholipase D. Genetic and pharmacological approaches implicate phospholipase D in a diverse range of cellular processes that include receptor signaling, control of intracellular membrane transport, and reorganization of the actin cytoskeleton. Most ideas about phospholipase D function consider that the phosphatidic acid product is an intracellular lipid messenger. Candidate targets for phospholipase-D-generated phosphatidic acid include phosphatidylinositol 4-phosphate 5-kinases and the raf protein kinase. Phosphatidic acid can also be converted to two other lipid mediators, diacylglycerol and lyso phosphatidic acid. Coordinated activation of these phospholipase-D-dependent pathways likely accounts for the pleitropic roles for these enzymes in many aspects of cell regulation.  相似文献   

10.
Summary Production of phospholipase D (PLD) by Streptoverticillium cinnamoneum immobilized within porous particles was investigated in repeated batch fermentation. The enzyme productivity in repeated batch fermentation was 2.2-fold that obtained in batch fermentation without immobilization, since many of the immobilized cells could be utilized as seed cells for each subsequent batch cycle.  相似文献   

11.
Tumor necrosis factor alpha (TNFalpha), a pleiotropic cytokine, activates both apoptotic and pro-survival signals depending on the cell model. Using ECV304 cells, which can be made TNFalpha-sensitive by cycloheximide (CHX) co-treatment, we evaluated the potential roles of ceramide and phospholipase D (PLD) in TNFalpha-induced apoptosis. TNFalpha/CHX induced a robust increase in ceramide levels after 16 h of treatment when cell death was maximal. PLD activity was increased at early time point (1h) whereas both PLD activity and PLD1 protein were strongly decreased after 24h. TNFalpha/CHX-induced cell death was significantly lowered by exogenous bacterial PLD and phoshatidic acid, and in cells overexpressing PLD1. Conversely, cells depleted in PLD proteins by small interference RNA (siRNA) treatment exhibited higher susceptibility to apoptosis. These results show that PLD exerts a protective role against TNFalpha-induced cell death.  相似文献   

12.
Cellular senescence appears to be an important part of organismal aging. Cellular senescence is characterized by flattened enlarged morphology, inhibition of DNA replication in response to growth factors, inability to phosphorylate the pRb tumor suppressor protein, inability to produce c-fos or AP-1 and overexpression of a variety of genes, notably p21 (CIP-1/WAF-1) and p16INK. It is now clear that certain early mitotic signals become defective with the onset of senescence. Among these is the PLD/PKC pathway. Evidence suggests that activation of PLD and PKC is critical for mitogenesis. Recent data suggest that the defect in PLD/PKC in cellular senescence is a result of elevated cellular ceramide levels which inhibit PLD activation. It appears that the elevated ceramide is a result of neutral sphingomyelinase activation. Ceramide acts to inhibit the activation of PLD by possibly three mechanisms, inhibiting activation by Rho, translocation to the membrane and gene expression. Addition of ceramide to young cells not only inhibits PLD but also recapitulates all the standard measures of cellular senescence as described above.  相似文献   

13.
14.
15.
A homogenate of human platelets was fractionated by zonal ultracentrifugation into membranes, various granules and mitochondria. The membrane fraction was composed of two populations. The first, which represented 75% of the proteins, was rich in plasma membranes; the second, which represented the remaining 25%, was rich in microsomal membranes. Lysophospholipase was essentially localised in the cytosol. Phospholipase A1 which was only weakly bound to membranes, was mostly found in the soluble fraction (75%); the remainder was located in the plasma membranes and the mitochondria. Two-thirds of the phospholipase A2 was found in the particulate fractions.  相似文献   

16.
Phospholipase D and its application in biocatalysis   总被引:4,自引:0,他引:4  
Phospholipase D (PLD) from plants or microorganisms is used as biocatalyst in the transformation of phospholipids and phospholipid analogs in both laboratory and industrial scale. In recent years the elucidation of the primary structure of many PLDs from several sources, as well as the resolution of the first crystal structure of a microbial PLD, have yielded new insights into the structural basis and the catalytic mechanism of this catalyst. This review summarizes some new results of PLD research in the light of application.  相似文献   

17.
NBT-II cells on collagen-coated substrates move rapidly and persistently, maintaining a semi-circular shape with a large lamellipodium, in a manner similar to fish keratocytes. The inhibitor of phospholipase D (PLD), n-butanol, completely blocked the migration and disturbed the characteristic localization of actin along the edge of lamellipodia. To investigate the functional difference between the two isozymes of PLD (PLD1 and PLD2), we transfected NBT-II cells with vectors expressing shRNA to deplete PLD1 or PLD2. Depletion of both PLD1 and 2 by RNA interference reduced the velocity of the migration, but depletion of PLD2 inhibited motility more severely than that of PLD1. Furthermore, GFP-PLD2 was localized to the protruding regions of lamellipodia in migrating cells. Thus, PLD is essential for the maintenance of keratocyte-like locomotion of NBT-II cells, presumably by regulating the actin cytoskeleton.  相似文献   

18.
Phospholipase D (PLD) has emerged as a regulator of several critical aspects of cell physiology. PLD, which catalyzes the hydrolysis of phosphatidylcholine (PC) to phosphatidic acid (PA) and choline, is activated in response to stimulators of vesicle transport, endocytosis, exocytosis, cell migration, and mitosis. Dysregulation of these cell biological processes occurs in the development of a variety of human tumors. It has now been observed that there are abnormalities in PLD expression and activity in many human cancers. In this review, evidence is summarized implicating PLD as a critical regulator of cell proliferation, survival signaling, cell transformation, and tumor progression.  相似文献   

19.
Phospholipase D in hormonal and stress signaling   总被引:13,自引:0,他引:13  
Phospholipase D (PLD) is a family of diverse enzymes that are differentially regulated by Ca(2+), polyphosphoinositides, free fatty acids, G-proteins, N-acylethanolamines, and membrane lipid environments. Two new types of PLDs were identified in the past year: one is activated by oleic acid and the other requires no cation for activity. The oleate-stimulated PLD is associated with the plasma membrane and binds to microtubules. The Ca(2+)-independent PLD contains a PX and a PH domain, but not the Ca(2+)/phospholipid-binding C2 domain found in most plant PLDs. The mechanism by which Ca(2+), phosphoinositides, and G proteins regulate certain PLDs is better understood. PLDs and their product phosphatidic acid are involved in various stress responses, including water deficits, salts, wounding, and elicitation. Increasing evidence supports a role of PLD in the abscisic acid signaling cascades.  相似文献   

20.
Summary CD63 is a 53 kDa lysosomal membrane glycoprotein that has been identified as a platelet activation molecule. We investigated the localization of CD63 antigen in platelets and in three megakaryocytic cell lines (K562, HEL and CMK11-5) using flow cytometry and immunoelectron microscopy. Flow cytometry showed that a monoclonal antibody directed against CD63 bound to 8.1% of unstimulated platelets and 59.2% of thrombin-stimulated platelets. Immunoelectron microscopy demonstrated that CD63 antigen was distributed randomly inside unstimulated platelets, while it was localized in the open canalicular system of washed platelets and on the cell membranes of thrombin-stimulated platelets. Flow cytometry detected CD63 on 16.4% of HEL cells, 31.2% of K562 cells, and 43.2% of CMK11-5 cells. Immunoelectron microscopy demonstrated that CD63 was localized in the granules and on the surface membranes of HEL cells, in the vesicles and on the membranes of K562 cells, and in the granules and vesicles as well as on the membranes of CMK11-5 cells. Thus, the distribution of CD63 differed markedly among these three megakaryocytic cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号