首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DsRed, a recently cloned red fluorescent protein, has attracted great interest as an expression tracer and fusion partner for multicolor imaging. We report that three-photon excitation (lambda <760 nm) rapidly changes the fluorescence of DsRed from red to green when viewed subsequently by conventional (one-photon) epifluorescence. Mechanistically, three-photon excitation (lambda <760 nm) selectively bleaches the mature, red-emitting form of DsRed, thereby enhancing emission from the immature green form through reduction of fluorescence resonance energy transfer (FRET). The "greening" effect occurs in live mammalian cells at the cellular and subcellular levels, and the resultant color change persists for >30 h without affecting cell viability. This technique allows individual cells, organelles, and fusion proteins to be optically marked and has potential utility for studying cell lineage, organelle dynamics, and protein trafficking, as well as for selective retrieval of cells from a population. We describe optimal parameters to induce the color change of DsRed, and demonstrate applications that show the potential of this optical highlighter.  相似文献   

2.
Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed).   总被引:19,自引:0,他引:19  
The red fluorescent protein DsRed has spectral properties that are ideal for dual-color experiments with green fluorescent protein (GFP). But wild-type DsRed has several drawbacks, including slow chromophore maturation and poor solubility. To overcome the slow maturation, we used random and directed mutagenesis to create DsRed variants that mature 10-15 times faster than the wild-type protein. An asparagine-to-glutamine substitution at position 42 greatly accelerates the maturation of DsRed, but also increases the level of green emission. Additional amino acid substitutions suppress this green emission while further accelerating the maturation. To enhance the solubility of DsRed, we reduced the net charge near the N terminus of the protein. The optimized DsRed variants yield bright fluorescence even in rapidly growing organisms such as yeast.  相似文献   

3.
Tubbs JL  Tainer JA  Getzoff ED 《Biochemistry》2005,44(29):9833-9840
The mature self-synthesizing p-hydroxybenzylideneimidazolinone-like fluorophores of Discosoma red fluorescent protein (DsRed) and Aequorea victoria green fluorescent protein (GFP) are extensively studied as powerful biological markers. Yet, the spontaneous formation of these fluorophores by cyclization, oxidation, and dehydration reactions of tripeptides within their protein environment remains incompletely understood. The mature DsRed fluorophore (Gln 66, Tyr 67, and Gly 68) differs from the GFP fluorophore by an acylimine that results in Gln 66 Calpha planar geometry and by a Phe 65-Gln 66 cis peptide bond. DsRed green-to-red maturation includes a green-fluorescing immature chromophore and requires a chromophore peptide bond trans-cis isomerization that is slow and incomplete. To clarify the unique structural chemistry for the individual immature "green" and mature "red" chromophores of DsRed, we report here the determination and analysis of crystal structures for the wild-type protein (1.4 A resolution), the entirely green DsRed K70M mutant protein (1.9 A resolution), and the DsRed designed mutant Q66M (1.9 A resolution), which shows increased red chromophore relative to the wild-type DsRed. Whereas the mature, red-fluorescing chromophore has the expected cis peptide bond and a sp(2)-hybridized Gln 66 Calpha with planar geometry, the crystal structure of the immature green-fluorescing chromophore of DsRed, presented here for the first time, reveals a trans peptide bond and a sp(3)-hybridized Gln 66 Calpha with tetrahedral geometry. These results characterize a GFP-like immature green DsRed chromophore structure, reveal distinct mature and immature chromophore environments, and furthermore provide evidence for the coupling of acylimine formation with trans-cis isomerization.  相似文献   

4.
Mizuno H  Sawano A  Eli P  Hama H  Miyawaki A 《Biochemistry》2001,40(8):2502-2510
The biochemical and biophysical properties of a red fluorescent protein from a Discosoma species (DsRed) were investigated. The recombinant DsRed expressed in E. coli showed a complex absorption spectrum that peaked at 277, 335, 487, 530, and 558 nm. Excitation at each of the absorption peaks produced a main emission peak at 583 nm, whereas a subsidiary emission peak at 500 nm appeared with excitation only at 277 or 487 nm. Incubation of E. coli or the protein at 37 degrees C facilitated the maturation of DsRed, resulting in the loss of the 500-nm peak and the enhancement of the 583-nm peak. In contrast, the 500-nm peak predominated in a mutant DsRed containing two amino acid substitutions (Y120H/K168R). Light-scattering analysis revealed that DsRed proteins expressed in E. coli and HeLa cells form a stable tetramer complex. DsRed in HeLa cells grown at 37 degrees C emitted predominantly at 583 nm. The red fluorescence was imaged using a two-photon laser (Nd:YLF, 1047 nm) as well as a one-photon laser (He:Ne, 543.5 nm). When fused to calmodulin, the red fluorescence produced an aggregation pattern only in the cytosol, which does not reflect the distribution of calmodulin. Despite the above spectral and structural complexity, fluorescence resonance energy transfer (FRET) between Aequorea green fluorescent protein (GFP) variants and DsRed was achieved. Dynamic changes in cytosolic free Ca2+ concentrations were observed with red cameleons containing yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), or Sapphire as the donor and RFP as the acceptor, using conventional microscopy and one- or two-photon excitation laser scanning microscopy. Particularly, the use of the Sapphire-DsRed pair rendered the red cameleon tolerant of acidosis occurring in hippocampal neurons, because both Sapphire and DsRed are extremely pH-resistant.  相似文献   

5.
自从绿色荧光蛋白(GFP)被发现以来,荧光蛋白在生物医学领域已经成为一种重要的荧光成像工具.随着红色荧光蛋白DsRed的出现,各种优化的DsRed突变体和远红荧光蛋白也不断涌现.其中荧光蛋白生色团的形成机制对改建更优的荧光蛋白变种影响很大,对于红色荧光蛋白而言,大多数的红色荧光蛋白的生色团类型为DsRed类似生色团,在此基础上又出现了Far-red DsRed类似生色团.目前,含DsRed类似生色团的荧光蛋白主要有单体红色荧光蛋白、光转换荧光蛋白、斯托克斯红移蛋白、荧光计时器等.这些优化的荧光蛋白作为分子探针可以实现对活细胞、细胞器或胞内分子的时空标记和追踪,已经在生物工程学、细胞生物学、基础医学领域得到广泛应用.本文综述了含DsRed类似生色团的荧光蛋白的研究进展及其应用,以及由此发展起来的远红荧光蛋白在活体显微成像技术中的应用,并展望了荧光探针技术研究的新方向.  相似文献   

6.
Green fluorescent protein (GFP) from jellyfish Aequorea victoria, the powerful genetically encoded tag presently available in a variety of mutants featuring blue to yellow emission, has found a red-emitting counterpart. The recently cloned red fluorescent protein DsRed, isolated from Discosoma corals (), with its emission maximum at 583 nm, appears to be the long awaited tool for multi-color applications in fluorescence-based biological research. Studying the emission dynamics of DsRed by fluorescence correlation spectroscopy (FCS), it can be verified that this protein exhibits strong light-dependent flickering similar to what is observed in several yellow-shifted mutants of GFP. FCS data recorded at different intensities and excitation wavelengths suggest that DsRed appears under equilibrated conditions in at minimum three interconvertible states, apparently fluorescent with different excitation and emission properties. Light absorption induces transitions and/or cycling between these states on time scales of several tens to several hundreds of microseconds, dependent on excitation intensity. With increasing intensity, the emission maximum of the static fluorescence continuously shifts to the red, implying that at least one state emitting at longer wavelength is preferably populated at higher light levels. In close resemblance to GFP, this light-induced dynamic behavior implies that the chromophore is subject to conformational rearrangements upon population of the excited state.  相似文献   

7.
Earlier mutagenesis of the red fluorescent protein drFP583, also called DsRed, resulted in a mutant named Fluorescent Timer (Terskikh, A., Fradkov, A., Ermakova, G., Zaraisky, A., Tan, P., Kajava, A. V., Zhao, X., Lukyanov, S., Matz, M., Kim, S., Weissman, I., and Siebert, P. (2000) Science 290, 1585--1588). Further mutagenesis generated variants with novel and improved fluorescent properties. The mutant called AG4 exhibits only green fluorescence. The mutant, called E5up (V105A), shows complete fluorophore maturation, eventually eliminating residual green fluorescence present in DsRed. Finally, the mutant, called E57 (V105A, I161T, S197A), matures faster than DsRed as demonstrated in vitro with purified protein and in vivo with recombinant protein expressed in Escherichia coli and Xenopus leavis. Comparative analysis of the mutants in the context of the crystal structure of DsRed suggests that mutants with free space around the fluorophore mature faster and more completely.  相似文献   

8.
The yellow fluorescent protein (zFP538) from coral Zoanthus sp. belongs to a family of green fluorescent protein (GFP). Absorption and emission spectra of zFP538 show an intermediate bathochromic shift as compared with a number of recently cloned GFP-like red fluorescent and nonfluorescent chromoproteins of the DsRed subfamily. Here we report that the zFP538 chromophore is very close, if not identical, in chemical structure to that of DsRed. To gain insight into the mechanism of zFP538 fluorescence and chromophore structure and chemistry, we studied three chromophore-containing peptides isolated from enzymatic digests of zFP538. Like GFP and DsRed chromophores, these contain a p-hydroxybenzylideneimidazolinone moiety formed by Lys-66, Tyr-67, and Gly-68 of zFP538. One of the peptides studied, the hexapeptide FKYGDR derivative, is a proteolysis product of the zFP538 full-length polypeptide containing a GFP-type chromophore already formed and arrested at an earlier stage of maturation. The two other peptides are the derivatives of the pentapeptide KYGDR resulted from the protein in which the chromophore maturation process had been completed. One of these has an oxogroup at Lys-66 C(alpha) and is a hydrolysis product of another one, with the imino group at Lys-66 C(alpha). The N-unsubstituted imino moiety of the latter is generated by spontaneous polypeptide chain fragmentation at a very unexpected site, the former peptide bond between Phe-65 C' and Lys-66 N(alpha). Also observed in the entire protein under mild denaturing conditions, this fragmentation is likely the feature of native zFP538 chromophore that distinguishes it chemically from the DsRed chromophore.  相似文献   

9.
Many cnidarians display vivid fluorescence under proper lighting conditions. In general, these colors are due to the presence of fluorescent proteins similar to the green fluorescent protein (GFP) originally isolated from the hydrozoan medusa Aequorea victoria (Cnidaria: Hydrozoa). To optimize the search for new fluorescent proteins (FPs), a technique was developed that allows for the rapid cloning and screening of FP genes without the need for a prior knowledge of gene sequence. Using this method, four new FP genes were cloned, a green from Montastraea cavernosa (Anthozoa: Scleractinia: Faviidae), a cyan from Pocillopora damicornis (Anthozoa: Scleractinia: Pocilloporidae), a cyan from Discosoma striata (Anthozoa: Corallimorpharia), and a red from a second Discosoma species. Two additional green FPs were cloned, one from M. cavernosa and one from its congener Montastraea faveolata, from purified cDNA using PCR primers designed for the first M. cavernosa green FP. Each FP has recognizable amino acid sequence motifs that place them conclusively in the GFP protein family. Mutation of these products using a low-stringency PCR protocol followed by screening of large numbers of bacterial colonies allowed rapid creation of mutants with a variety of characteristics, including changes in color, maturation time, and brightness. An enhanced version of the new red FP, DspR1+, matures faster at 30 degrees C than the commercially available DsRed but matures slower than DsRed at 37 degrees C. One of the M. cavernosa green FPs, McaG2, is highly resistant to photobleaching and has a fluorescence quantum yield approximately twice that of EGFP-1.  相似文献   

10.
The green fluorescent protein (GFP) has become an invaluable marker for monitoring protein localization and gene expression in vivo. Recently a new red fluorescent protein (drFP583 or DsRed), isolated from tropical corals, has been described [Matz, M.V. et al. (1999) Nature Biotech. 17, 969-973]. With emission maxima at 509 and 583 nm respectively, EGFP and DsRed are suited for almost crossover free dual color labeling upon simultaneous excitation. We imaged mixed populations of Escherichia coli expressing either EGFP or DsRed by one-photon confocal and by two-photon microscopy. Both excitation modes proved to be suitable for imaging cells expressing either of the fluorescent proteins. DsRed had an extended maturation time and E. coli expressing this fluorescent protein were significantly smaller than those expressing EGFP. In aging bacterial cultures DsRed appeared to aggregate within the cells, accompanied by a strong reduction in its fluorescence lifetime as determined by fluorescence lifetime imaging microscopy.  相似文献   

11.
mPlum is a far‐red fluorescent protein with emission maximum at ~650 nm and was derived by directed evolution from DsRed. Two residues near the chromophore, Glu16 and Ile65, were previously revealed to be indispensable for the far‐red emission. Ultrafast time‐resolved fluorescence emission studies revealed a time dependent shift in the emission maximum, initially about 625 nm, to about 650 nm over a period of 500 ps. This observation was attributed to rapid reorganization of the residues solvating the chromophore within mPlum. Here, the crystal structure of mPlum is described and compared with those of two blue shifted mutants mPlum‐E16Q and ‐I65L. The results suggest that both the identity and precise orientation of residue 16, which forms a unique hydrogen bond with the chromophore, are required for far‐red emission. Both the far‐red emission and the time dependent shift in emission maximum are proposed to result from the interaction between the chromophore and Glu16. Our findings suggest that significant red shifts might be achieved in other fluorescent proteins using the strategy that led to the discovery of mPlum.  相似文献   

12.
The main potential of intrinsically fluorescent proteins (IFPs), as noninvasive and site-specific markers, lies in biological applications such as intracellular visualization and molecular genetics. However, photophysical studies of IFPs have been carried out mainly in aqueous solution. Here, we provide a comprehensive analysis of the intracellular environmental effects on the steady-state spectroscopy and excited-state dynamics of green (EGFP) and red (DsRed) fluorescent proteins, using both one- and two-photon excitation. EGFP and DsRed are expressed either in the cytoplasm of rat basophilic leukemia (RBL-2H3) mucosal mast cells or anchored (via LynB protein) to the inner leaflet of the plasma membrane. The fluorescence lifetimes (within approximately 10%) and spectra in live cells are basically the same as in aqueous solution, which indicate the absence of both IFP aggregation and cellular environmental effects on the protein folding under our experimental conditions. However, comparative time-resolved anisotropy measurements of EGFP reveal a cytoplasmic viscosity 2.5 +/- 0.3 times larger than that of aqueous solution at room temperature, and also provide some insights into the LynB-EGFP structure and the heterogeneity of the cytoplasmic viscosity. Further, the oligomer configuration and internal depolarization of DsRed, previously observed in solution, persists upon expression in these cells. DsRed also undergoes an instantaneous three-photon induced color change under 740-nm excitation, with efficiently nonradiative green species. These results confirm the implicit assumption that in vitro fluorescence properties of IFPs are essentially valid for in vivo applications, presumably due to the beta-barrel protection of the embodied chromophore. We also discuss the relevance of LynB-EGFP anisotropy for specialized domains studies in plasma membranes.  相似文献   

13.
A number of recently cloned chromoproteins homologous to the green fluorescent protein show a substantial bathochromic shift in absorption spectra. Compared with red fluorescent protein from Discosoma sp. (DsRed), mutants of these so-called far-red proteins exhibit a clear red shift in emission spectra as well. Here we report that a far-red chromoprotein from Goniopora tenuidens (gtCP) contains a chromophore of the same chemical structure as DsRed. Denaturation kinetics of both DsRed and gtCP under acidic conditions indicates that the red form of the chromophore (absorption maximum at 436 nm) converts to the GFP-like form (384 nm) by a one-stage reaction. Upon neutralization, the 436-nm form of gtCP, but not the 384-nm form, renaturates instantly, implying that the former includes a chromophore in its intact state. gtCP represents a single-chain protein and, upon harsh denaturing conditions, shows three major bands in SDS/PAGE, two of which apparently result from hydrolysis of an acylimine C=N bond. Instead of having absorption maxima at 384 nm and 450 nm, which are characteristic for a GFP-like chromophore, fragmented gtCP shows a different spectrum, which presumably corresponds to a 2-keto derivative of imidazolidinone. Mass spectra of the chromophore-containing peptide from gtCP reveal an additional loss of 2 Da relative to the GFP-like chromophore. Tandem mass spectrometry of the chromopeptide shows that an additional bond is dehydrogenated in gtCP at the same position as in DsRed. Altogether, these data suggest that gtCP belongs to the same subfamily as DsRed (in the classification of GFP-like proteins based on the chromophore structure type).  相似文献   

14.
Pakhomov AA  Martynov VI 《Biochemistry》2007,46(41):11528-11535
The red fluorescence of a Discosoma coral protein is the result of an additional autocatalytic oxidation of a green fluorescent protein (GFP)-like chromophore. This reaction creates an extra pi-electron conjugation by forming a C=N-C=O substituent. Here we show that the red fluorescence of a protein from Zoanthus sp. 2 (z2FP574) arises from a coupled oxidation-decarboxylation of Asp-66, the first amino acid of the chromophore-precursory DYG sequence. Comparative mutagenesis of highly homologous green (zFP506) and red (z2FP574) fluorescent proteins from Zoanthus species reveals that an aspartate at position 66 is critical for the development of red fluorescence. The maturation kinetics of wild-type z2FP574 and the zFP506 N66D mutant indicates that the "green" GFP-like form is the actual intermediate in producing the red species. Furthermore, via maturation kinetics analysis of zFP506 N66D, combined with mass spectrometry, we determined that the oxidation-decarboxylation of Asp-66 occurs without detectable intermediate products. According to mass spectral data, the minor "red" chromophore of the z2FP574 D66E mutant appears to be oxidized and completely decarboxylation deficient, indicating that the side chain length of acidic amino acid 66 is critical in controlling efficient oxidation-decarboxylation. Substitutions with aspartate at the equivalent positions of a Condylactis gigantea purple chromoprotein and Dendronephthya sp. green fluorescent protein imply that additional oxidation of a GFP-like structure is a prerequisite for chromophore decarboxylation. In summary, these results lead to a mechanism that is related to the chemistry of beta-keto acid decarboxylation.  相似文献   

15.
The fluorescence quenching of drFP583 (DsRed) protein by metal ions was investigated. CuSO4 reversibly and pH dependently quenched the red emission at 583 nm of drFP583. The copper binding constant was 15 mM. Following random mutagenesis, blue- and red-shifted mutants of drFP583 were generated, and their metal sensing properties were examined. Mutant gRF possessed properties similar to green fluorescent protein and had a 18 mM copper binding constant. Mutant Rmu162 had an extraordinary red-shifted emission peak at 620 nm. A third mutant, Rmu13, had dual emission peaks at 500 nm and 583 nm and possessed the properties of a copper sensor with a binding constant of 11 mM.  相似文献   

16.
Fluorescence resonance energy transfer between mutant green fluorescent proteins provides powerful means to monitor in vivo protein-protein proximity and intracellular signaling. However, the current widely applied FRET pair of this class (CFP/YFP) requires excitation by expensive UV lasers, thereby hindering FRET imaging on many confocal microscopes. Further challenges arise from the large spectral overlap of CFP/YFP emission. Another FRET pair GFP/DsRed could obviate such limitations. However, the use of DsRed as a FRET acceptor is hampered by several critical problems, including a slow and incomplete maturation and obligate tetramerization. A tandem dimer mutant of DsRed (TDimer2) has similar spectral properties as those of DsRed. The rapid maturation and non-oligomerization make TDimer2 a promising substitute for DsRed in FRET experiments. Here, we have explored the possibility of using TDimer2 as a FRET acceptor for the donor EGFP. FRET was demonstrated between the EGFP-TDimer2 chimeric fusion protein. By substituting CFP/YFP in the Ca2+-sensor cameleon with EGFP/TDimer2, dynamic changes in cytosolic free Ca2+ concentrations were observed with 488nm excitation under conventional wide-field microscopy. The EGFP/TDimer2 pair was further successfully employed to monitor inter-molecular interaction between Syntaxin and SNAP25. These results reveal EGFP/TDimer2 as a promising FRET pair in monitoring intra-molecular conformation change as well as inter-molecular interaction.  相似文献   

17.
The crystal structures of DsRed have shown that it contains an unusual non-proline containing cis peptide linkage. We have shown that it is also present in the precyclized immature form of DsRed, thereby eliminating the possibility that cis/trans isomerization drives the formation of the acylimine, which is responsible for DsRed's red fluorescence. Two mechanisms have been proposed for chromophore formation in green fluorescent protein (GFP), a "reduced" and an "oxidized" mechanism. DsRed adopts a tight turn conformation, such as that found in GFP, in the immature intermediate proposed in the oxidized mechanism, but not in the one predicted by the reduced mechanism.  相似文献   

18.
The photophysical properties of synthetic compounds derived from the imidazolidinone chromophore of the green fluorescent protein were determined. Various electron-withdrawing or electron-donating substituents were introduced to mimic the effect of the chromophore surroundings in the protein. The absorption and emission spectra as well as the fluorescence quantum yields in dioxane and glycerol were shown to be highly dependent on the electronic properties of the substituents. We propose a kinetic scheme that takes into account the temperature-dependent twisting of the excited molecule. If the activation energy is low, the molecule most often undergoes an excited-state intramolecular twisting that leads it to the ground state through an avoided crossing between the S(1) and S(0) energy surfaces. For a high activation energy, the torsional motion within the compounds is limited and the ground-state recovery will occur preferentially by fluorescence emission. The excellent correlation between the fluorescence quantum yields and the calculated activation energies to torsion points to the above-mentioned avoided crossing as the main nonradiative deactivation channel in these compounds. Finally, our results are discussed with regard to the chromophore in green fluorescent protein and some of its mutants.  相似文献   

19.
Fluorescent proteins have become extremely popular tools for in vivo imaging and especially for the study of localization, motility and interaction of proteins in living cells. Here we report TagRFP, a monomeric red fluorescent protein, which is characterized by high brightness, complete chromophore maturation, prolonged fluorescence lifetime and high pH-stability. These properties make TagRFP an excellent tag for protein localization studies and fluorescence resonance energy transfer (FRET) applications.  相似文献   

20.
The red fluorescent protein DsRed2 is a useful fusion tag for various proteins, together with the enhanced green fluorescent protein (EGFP). These chromoproteins have spectral properties that allow simultaneous distinctive detection of tagged proteins in the same single cells by dual color imaging. We used them for tagging a secretory protein, human interferon-beta (IFN-beta). Expression plasmids for human IFN-beta tagged with DsRed2 or with EGFP at the carboxyl terminal were constructed and their coexpression was examined in Mardin-Darby canine kidney epithelial cells. Although maturation of DsRed2 for coloration was slow and the color intensity was weak compared with EGFP, low temperature treatment (20 degrees C) allowed DsRed2-tagged human IFN-beta to be detected in the cells using color imaging. Consequently, the two chimeric proteins were shown to be colocalized in the same single cells by dual color confocal microscopy. This approach will be useful for investigating subcellular localization of not only cell resident proteins but also secretory proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号