首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The synthesis and action of the dnaA product with respect to DNA initiation and the synthesis of DNA-binding proteins in Escherichia coli was examined. Results indicate that when dnaA product is irreversibly denatured and must be synthesized before initiation can occur, its synthesis and action appear to be complete approximately 30 min before initiation takes place. However, in mutants whose dnaA product is temperature reversible the action of the dnaA product appears to occur near the time of initiation. Examination of the DNA-binding proteins from the mutants suggests that a 53 kd protein, possibly the dnaA product, may be synthesized at the time of initiation under normal conditions at permissive temperature. The presence of active dnaA product appears to trigger the synthesis of a 60–65 kd protein which may be responsible for preventing another immediate initiation event.  相似文献   

2.
Coordinate expression of Escherichia coli dnaA and dnaN genes   总被引:4,自引:0,他引:4  
Summary The defects of temperature-sensitive dnaA and dnaN mutants of Escherichia coli are complemented by a recombinant lambda phage, which carries the bacterial DNA segment composed of two EcoRI segments of 1.0 and 3.3 kilobases. Derivatives of the phage, which have an insertion segment of Tn3 in the dnaA gene, are much less active in expressing the dnaN gene function than the parent phage. The dnaN gene activity was determined as the efficiency of superinfecting phage to suppress loss of the viability of lysogenic dnaN59 cells at the nonpermissive temperature. Deletions that include the end of the dnaA gene distal to the dnaN gene also reduce the expression of the dnaN gene fuction. Deletion and insertion in the dnaN gene do not affect the expression of the dnaA gene function. The expression of the dnaN gene function by the dnaA - dnaN + phages remains weak upon simultaneous infection with dnaA + dnaN - phages. Thus the insertion and deletion in the dnaA gene influence in cis the expression of the dnaN gene. We propose that the dnaA and dnaN genes constitute an operon, where the former is upstream to the latter.  相似文献   

3.
Summary The dnaA gene product of Escherichia coli, identified as a weakly basic protein of about 48,000 daltons (Yuasa and Sakakibara 1980), can be separated from other celluar proteins by means of two-dimensional gel electrophoresis. Synthesis of the dnaA protein took place continuously during a cell growth cycle. The newly synthesized dnaA protein persisted stably for one generation. Thermosensitive dnaA protein produced by the dnaA167 mutant was stable at 30° C, but was disintegrated at 42° C. The amount of intact dnaA protein present in the mutant exposed to the high temperature for 60 min was less than a quarter of the amount at the time of the shift. The cells having the reduced amount of intact dnaA protein were capable of initiating a new round of chromosome replication at the low temperature without de novo synthesis of the dnaA protein. The potential of the mutant for initiation of DNA replication decreased with reduction in the amount of the thermoreversible dnaA protein. The mutations dnaA167 and dnaA46 had no significant effect on the syntheses of the dnaA mRNA and the protein product at the low and high temperatures.Abbreviations used SDS sodium dodecyl sulfate - kb kilobase pairs - TCA trichloroacetic acid  相似文献   

4.
5.
The key elements of the initiation of Helicobacter pylori chromosome replication, DnaA protein and putative oriC region, have been characterized. The gene arrangement in the H.pylori dnaA region differs from that found in many other eubacterial dnaA regions (rnpA-rmpH-dnaA-dnaN-recF-gyrB). Helicobacter pylori dnaA is flanked by two open reading frames with unknown function, while dnaN-gyrB and rnpA-rmpH loci are separated from the dnaA gene by 600 and 90 kb, respectively. We show that the dnaA gene encoding initiator protein DnaA is expressed in H.pylori cells. The H.pylori DnaA protein, like other DnaA proteins, can be divided into four domains. Here we demonstrate that the C-terminal domain of H.pylori DnaA protein is responsible for DNA binding. Using in silico and in vitro studies, the putative oriC region containing five DnaA boxes has been located upstream of the dnaA gene. DNase I and gel retardation analyses show that the C-terminal domain of H.pylori DnaA protein specifically binds each of five DnaA boxes.  相似文献   

6.
Summary An Escherichia coli mutant defective in replication of the chromosome has been isolated from temperature-sensitive mutants that cannot support colicin E1 plasmid DNA synthesis in the presence of chloramphenicol. Cellular DNA synthesis of the mutant ceases almost immediately after transfer to the nonpermissive temperature. The defect is due to a single mutation, dna-59, which is located close to the sites of dnaA mutations and a cou R mutation conferring DNA gyrase with resistance to coumermycin. The dna-59 mutant is not able to support DNA synthesis of phage at the high temperature. The mutant also restricts growth of X174 phage at the high temperature, but permits formation of supercoiled closedcircular duplex replicative intermediates. T7 phage can grow on the mutant even at the high temperature.A specialized transducing phage imm 21[tna dnaA]#2 (Miki et al., 1978) supports growth of dna-59, dnaA46 and dna-167 cells at the high temperature. Some of the EDTA-resistant derivatives of the phage have lost part or all of the dnaA gene, but carry gene function complementing the defect of dna-59 cells, as judged by conversion of the above dna strains to wild type cells by phage infection, and by suppression of the loss of viability of dna-59 cells at the high temperature by phage infection. The gene containing the dna-59 mutation site is thus distinct from the dnaA gene. Since the dna-59 mutation does not affect expression of the cou r gene of DNA gyrase, which is another known gene involved in DNA synthesis near the dnaA gene, this mutation is probably in a new gene, dnaN. From analysis of the suppression activities of imm 21[tna dnaA]#2 phage and its deletion derivatives against dnaN59 cells, it is suggested that the expression of the dnaN gene function is reduced by deletion in the dnaA region.  相似文献   

7.
8.
9.
To determine the phylogenetic relationship among Paenibacillus species, putative replication origin regions were compared. In the rsmG-gyrA region, gene arrangements in Paenibacillus species were identical to those of Bacillus species, with the exception of an open reading frame (orf14) positioned between gyrB and gyrA, which was observed only in Paenibacillus species. The orf14 product was homologous to the endospore-associated proteins YheC and YheD of Bacillus subtilis. Phylogenetic analysis based on the YheCD proteins suggested that Orf14 could be categorized into the YheC group. In the Paenibacillus genome, DnaA box clusters were found in rpmH-dnaA and dnaA-dnaN intergenic regions, known as box regions C and R, respectively; this localization was similar to that observed in B. halodurans. A phylogenetic tree based on the nucleotide sequences of the whole replication origin regions suggested that P. popilliae, P. thiaminolyticus, and P. dendritiformis are closely related species.  相似文献   

10.
Summary Plasmids carrying different regions of the wild-type dnaA gene were used for marker rescue analysis of the temperature sensitivity of twelve strains carrying dnaA mutations. The different dnaA(Ts) mutations could be unambiguously located within specific regions of the dnaA gene. The mutant dnaA genes were cloned on pBR322-derived plasmids and on nucleotide sequencing by dideoxy chain termination the respective mutations were determined using M13 clones carrying the relevant parts of the mutant dnaA gene. Several of the mutant dnaA genes were found to have two mutations. The dnaA5, dnaA46, dnaA601, dnaA602, dnaA604, and dnaA606 genes all had identical mutations corresponding to an amino acid change from alanine to valine at amino acid 184 in the DnaA protein, close to the proposed ATP binding site, but all carried one further mutation giving rise to an amino acid substitution. The dnaA508 gene also had two mutations, whereas dnaA167, dnaA203, dnaA204, dnaA205, and dnaA211 each had only one. The pairs dnaA601/602, dnaA604/606, and dnaA203/204 were each found to have identical mutations. Plasmids carrying the different dnaA mutant genes intact were introduced into the respective dnaA mutant strains. Surprisingly, these homopolyploid mutant strains were found to be temperature resistant in most cases, indicating that a high intracellular concentration of the mutant DnaA protein can compensate for the decreased activity of the protein.  相似文献   

11.
Genetic and physical mapping of recF in Escherichia coli K-12   总被引:17,自引:0,他引:17  
Summary Two factor transductional crosses place recF at approximately 82 min on the E. coli chromosome; recF is highly cotransducible with dnaA and gyrB (cou). Transductional analysis with a series of tna specialized transducing phages carrying chromosomal DNA from the tnaA region place recF between dnaA and gyrB. This analysis also indicates that a gene lying in the same region and producing an easily detectable protein (estimated MW of 45 kD) is dnaN and not recF.  相似文献   

12.
Summary The thermosensitivity of dnaA(Ts) mutations can be suppressed by integration of plasmid F (integrative suppression). In the light of the recent finding that F requires DnaA protein for both establishment and maintenance, integrative suppression of 11 dnaA(Ts) mutations by a mini-F, pML31, integrated near oriC was examined. The plating efficiency of integratively suppressed strains was dnaA(Ts) allele-dependent and medium-dependent. The initiation capability of suppressed dnaA(Ts) strains lacking the oriC site and their F- counterparts was determined at various temperatures between 30°C and 42°C. The degree of integrative suppression measured by the initiation capability varied in a dnaA(Ts) allele-dependent manner. F-directed DNA replication was most affected by the dnaA(Ts) mutations mapping in the middle of the gene whereas oriC-dependent replication was most thermosensitive in strains carrying mutations mapping in the carboxy-terminal half of the gene. The results indicated that the integrative suppression by F plasmid is a DnaA-dependent process and suggested that the requirements for DnaA protein in the oriC-dependent replication and F replication processes are qualitatively different.  相似文献   

13.
To identify the psbA gene product of Euglena gracilis, we compared products translated in organello and in vitro. The most prominently labeled membrane protein of isolated Euglena plastids migrates as a band at 28 kilodaltons. An apparent precursor appears at 30 kilodaltons under conditions which inhibit the synthesis of cytoplasmically synthesized proteins. Translation of the 14S mRNA selected by hybridization with the Sephacryl S-500-immobilized psbA gene, however, yields products of ~37- and 41-kilodaltons. In organello, no significant label migrates to this region of the gel. We interpret these data to indicate that the primary translation product of Euglena psbA gene is larger than that of higher plants, but the mature, processed polypeptide is smaller.  相似文献   

14.
Summary Fifth instar larvae of the tobacco hornworm,Manduca sexta, tolerate 1-h exposures to temperatures as high as 42°C. Above 42°C, survival declines rapidly to 18% at 44°C and 0% at 48°C. As in other insects, the heat-shock response ofManduca sexta involves the induction of synthesis of heat-shock proteins very similar in size to theDrosophila heat-shock proteins (84, 73, 71, 27, 25, 23, and 22 kd). In the epidermis, heat-shock protein synthesis peaks at 42°C, correlating with the heat sensitivity of both the tissue itself and the intact larva. Some heat-shock proteins have different isoelectric forms depending on tissue. Also, the heat-shock proteins are synthesized over a wider range of temperatures in the imaginal discs and the fat body as compared to the epidermis. In contrast to dipteran insects,Manduca sexta does not exhibit a strong repression of non-heat-shock protein synthesis under tolerable conditions.Abbreviations TCA trichloroacetic acid - PAGE polyacrylamide gel electrophoresis - AZT arbitrary Zeitgeber time - kd kilodaltons  相似文献   

15.
The activation of DnaA protein by cardiolipin is inhibited by fluphenazinein vitro. We therefore examined the sensitivity of temperature-sensitivednaA mutants ofEscherichia coli to fluphenazine and other phenothiazine derivatives. Among the eightdnaA mutants tested,dnaA5, dnaA46 dnaA602, anddnaA604, mutants with mutations in the putative ATP binding site of DnaA protein, showed higher sensitivities to phenothiazine derivatives than did the wild-type strain. ThednaA508 anddnaA167 mutants, which have mutations in the N-terminal region of DnaA protein, also showed higher sensitivities to phenothiazine derivatives. On the other hand, thednaA204 anddnaA205 mutants, with lesions in the C-terminal region of the DnaA protein, showed the same sensitivity to phenothiazine derivatives as the wild-type strain. Complementation analysis with a plasmid containing the wild-typednaA gene and phage P1-mediated transduction confirmed thatdnaA mutations are responsible for these sensitivity phenotypes.  相似文献   

16.
Summary A fine structure genetic map of several mutations in the dnaA gene of Escherichia coli was constructed by the use of recombinant and M13 phages. The dnaA508 mutation was found to be the mutation most proximal to the promoter, while the dnaA203 mutation was found to be the most distal one. The order of mutations established in this analysis was: dnaA508, dnaA167, (dnaA5, dnaA46, dnaA211), dnaA205, dnaA204, dnaA203. The mutations dnaA601, dnaA602, dnaA603, dnaA604 and dnaA606 were found to map very close to each other and close to dnaA205 in the middle third of the dnaA gene. In analysing the dominance relationship all 13 dnaA mutations were found to be recessive to the wild type. Characteristic phenotypes of the dnaA(Ts) mutants, like reversibility of the temperature inactivation of the dnaA protein, cold sensivity of haploid or of merodiploid strains and suppressibility by rpoB mutations, are found to correlate with clusters of mutations within the gene.  相似文献   

17.
In order to study DNA replication control elements in cyanobacteria we cloned and sequenced the dnaA gene from the marine cyanobacterium Prochlorococcus marinus. The dnaA gene is ubiquitous among bacteria and encodes the DNA replication initiation factor DnaA. The deduced amino acid sequence of the P. marinus DnaA protein shows highest similarity to the DnaA protein from the freshwater cyanobacterium Synechocystis sp. PCC6803. Using a solid-phase DNA binding assay we demonstrated that both cyanobacterial DnaA proteins specifically recognize chromosomal origins, oriC, of Escherichia coli and Bacillus subtilis in vitro. The genetic environment of dnaA is not conserved between the two cyanobacteria. Upstream of the P. marinusdnaA gene we identified a gene encoding a putative ATP-binding cassette (ABC) transport protein. The gor gene encoding glutathione reductase lies downstream of dnaA. Comparison of the genetic structure of dnaA regions from 15 representative bacteria shows that the pattern of genes flanking dnaA is not universally conserved among them. Received: 20 July 1997 / Accepted: 7 October 1997  相似文献   

18.
Summary Recombinant plasmids were constructed from EcoRI digests of Escherichia coli chromosomal DNA and pMB9 DNA by selecting for suppression of a dnaA–T46 temperature-sensitive mutation. Two types of plasmid capable of suppressing the dnaA mutation were isolated. They did not carry any genetic markers around dnaA and physical mapping with various restriction enzymes showed that neither of the plasmids contained the dnaA gene. One plasmid, pYT47, was characterized further and the protein responsible for the suppression was identified by two-dimensional gel electrophoresis. The molecular weight of the suppressor protein was about 68 Kdal and thus is clearly different from the dnaA gene product.  相似文献   

19.
Summary Thermal inactivation of the dnaA gene product leads to a considerable decrease in the rate of replication of ColE1-like plasmids. To test the possiblity that the dnaA protein may affect synthesis of RNA I, which is an inhibitor of primer formation, or synthesis of RNA II, which is the primer precursor for replication of ColE1 (Tomizawa and Itoh 1982), the effect of the dnaA46 mutation on the efficiency of the RNA I and the RNA II promoters was examined. It appears that thermal inactivation of the dnaA protein results in a considerable increase in the activity of the RNA I promoter. We suggest that overproduction of RNA I in dnaA mutants grown at the restrictive temperature is responsible for the reduced replication of ColE1-like plasmids.It has been found that addition of rifampicin to cultures of the dnaA46 or the dna + strain grown at 42°C results in a dramatic increase in the rate of replication of ColE1-like plasmids. We show that the activity of the RNA II promoter at 42°C is exceptionally resistant to rifampicin. In the presence of the drug, this leads, to an altered ratio of RNA I to RNA II, in favor of the latter RNA species.  相似文献   

20.
Summary An 8.2 kb fragment of E. coli chromosomal DNA, when cloned in increased copy number, suppresses the dnaA46 mutation, and an abundant protein of about 68 kd (60 kd when measured by us), encoded by the fragment, is essential for the suppression (Takeda and Hirota 1982). Mapping experiments show that the fragment originates from the 94 min region of the chromosome. It encodes several proteins but only one abundant polypeptide of the correct size, the product of the groEL gene. Suppression by the fragment is allele specific; those mutations which map to the centre of the gene are suppressed. Other initiation mutants including dnaA203, dnaA204, dnaA508, dnaAam, dnaC, dnaP and dnaB252 are not suppressed. Most suppressed strains are cold-sensitive suggesting an interaction between the mutant proteins (or their genes) and the suppressing protein or proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号