首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huang J  Gan Q  Han L  Li J  Zhang H  Sun Y  Zhang Z  Tong T 《PloS one》2008,3(3):e1710
Sir2, a NAD-dependent deacetylase, modulates lifespan in yeasts, worms and flies. The SIRT1, mammalian homologue of Sir2, regulates signaling for favoring survival in stress. But whether SIRT1 has the function to influence cell viability and senescence under non-stressed conditions in human diploid fibroblasts is far from unknown. Our data showed that enforced SIRT1 expression promoted cell proliferation and antagonized cellular senescence with the characteristic features of delayed Senescence-Associated beta-galactosidase (SA-beta-gal) staining, reduced Senescence-Associated Heterochromatic Foci (SAHF) formation and G1 phase arrest, increased cell growth rate and extended cellular lifespan in human fibroblasts, while dominant-negative SIRT1 allele (H363Y) did not significantly affect cell growth and senescence but displayed a bit decreased lifespan. Western blot results showed that SIRT1 reduced the expression of p16(INK4A) and promoted phosphorylation of Rb. Our data also exposed that overexpression of SIRT1 was accompanied by enhanced activation of ERK and S6K1 signaling. These effects were mimicked in both WI38 cells and 2BS cells by concentration-dependent resveratrol, a SIRT1 activator. It was noted that treatment of SIRT1-.transfected cells with Rapamycin, a mTOR inhibitor, reduced the phosphorylation of S6K1 and the expression of Id1, implying that SIRT1-induced phosphorylation of S6K1 may be partly for the decreased expression of p16(INK4A) and promoted phosphorylation of Rb in 2BS. It was also observed that the expression of SIRT1 and phosphorylation of ERK and S6K1 was declined in senescent 2BS. These findings suggested that SIRT1-promoted cell proliferation and antagonized cellular senescence in human diploid fibroblasts may be, in part, via the activation of ERK/ S6K1 signaling.  相似文献   

2.
Li N  Li Q  Cao X  Zhao G  Xue L  Tong T 《FEBS letters》2011,585(19):3106-3112
  相似文献   

3.
Cellular senescence is a terminal growth phase characteristic of normal human diploid fibroblasts. Altered gene expression during cellular senescence is numerous compared to that of younger proliferative cells in culture. We have previously reported that the levels and activities of hnRNP A1 and A2 RNA binding proteins are decreased in senescent human fibroblasts. Both proteins are multifunctional and may influence the expression of mRNA isoforms during development. In this study, we tested whether overexpression of either protein could modulate the mRNA isoforms of the INK4a locus, specifically p14(ARF) and p16(INK4a). Both INK4a mRNA isoforms have been shown to be growth suppressors and deletions of this locus allow cells to escape cellular senescence. We have found that increasing the ratio of either hnRNP A1 or A2 over that of splicing factor SF2/ASF results in the preferential generation of the p14(ARF) isoform. Overexpression of A1 or A2 RNA binding proteins also appear to increase the steady state mRNA levels of both isoforms, suggesting that in addition to alternative splicing, A1 and A2 may effect p14(ARF) and p16(INK4a) mRNA stability. A constitutive decrease in the ratio of hnRNP A1 or A2 to SF2/ASF in senescent fibroblasts is typically accompanied by an increase in the level of p16(INK4a) isoform. Our studies suggest that hnRNP A1 and A2 may exert an important role during replicative senescence by altering expression of cell cycle regulatory proteins through mRNA metabolism.  相似文献   

4.
Zhang W  Chan HM  Gao Y  Poon R  Wu Z 《EMBO reports》2007,8(10):952-958
  相似文献   

5.
6.
Cooperation between p53 and p130(Rb2) in induction of cellular senescence   总被引:1,自引:0,他引:1  
To determine pathways cooperating with p53 in cellular senescence when the retinoblastoma protein (pRb)/p16INK4a pathway is defunct, we stably transfected the p16INK4a-negative C6 rat glioma cell line with a temperature-sensitive mutant p53. Activation of p53(Val-135) induces a switch in pocket protein expression from pRb and p107 to p130(Rb2) and stalls the cells in late G1, early S-phase at high levels of cyclin E. Maintenance of the arrest depends on the functions of p130(Rb2) repressing cyclin A. Inactivation of p53 in senescent cultures restores the pocket proteins to initial levels and initiates progression into S-phase, but the cells fail to resume proliferation, likely due to DNA damage becoming apparent in the arrest and activating apoptosis subsequent to the release from p53-dependent growth suppression. The data indicate that p53 can cooperate selectively with p130(Rb2) to induce cellular senescence, a pathway that may be relevant when the pRb/p16INK4a pathway is defunct.  相似文献   

7.
8.
9.
10.
11.
It has been reported that genomic DNA methylation decreases gradually during cell culture and an organism's aging. However, less is known about the methylation changes of age-related specific genes in aging. p21(Waf1/Cip1) and p16(INK4a) are cyclin-dependent kinase (Cdk) inhibitors that are critical for the replicative senescence of normal cells. In this study, we show that p21(Waf1/Cip1) and p16(INK4a) have different methylation patterns during the aging process of normal human 2BS and WI-38 fibroblasts. p21(Waf1/Cip1) promoter is gradually methylated up into middle-aged fibroblasts but not with senescent fibroblasts, whereas p16(INK4a) is always unmethylated in the aging process. Correspondently, the protein levels of DNA methyltransferase 1 (DNMT1) and DNMT3a increase from young to middle-aged fibroblasts but decrease in the senescent fibroblasts, while DNMT3b decreases stably from young to senescent fibroblasts. p21(Waf1/Cip1) promoter methylation directly represses its expression and blocks the radiation-induced DNA damage-signaling pathway by p53 in middle-aged fibroblasts. More importantly, demethylation by 5-aza-CdR or DNMT1 RNA interference (RNAi) resulted in an increased p21(Waf1/Cip1) level and premature senescence of middle-aged fibroblasts demonstrated by cell growth arrest and high beta-Galactosidase expression. Our results suggest that p21(Waf1/Cip1) but not p16(INK4a) is involved in the DNA methylation mediated aging process. p21(Waf1/Cip1) promoter methylation may be a critical biological barrier to postpone the aging process.  相似文献   

12.
13.
14.
15.
16.
Human T lymphocytes can be numerically expanded in vitro only to a limited extent. The cyclin-dependent kinase inhibitor p16(INK4a) is essential in the control of cellular proliferation, and its expression, in epithelial cells, is associated with irreversible growth arrest. Using long-term cultured CD8+ T lymphocytes, we have investigated the role of the p16/pRb pathway in the regulation of T cell proliferation and senescence. In this study, we describe at least two mechanisms that cause replicative growth arrest in cultured lymphocytes. The first one depends on the expression of p16(INK4a) and is directly responsible for the exit of a significant proportion of CD8+ T cells from the proliferative population. This induced p16 expression pattern is observed during each round of mitogen stimulation and is not related to activation-induced cell death. Importantly, knocking down p16(INK4a) expression allows increased proliferation of T cells. The second one is a phenomenon that resembles human fibroblast senescence, but is independent of p16(INK4a) and of telomere attrition. Interestingly, virtually all pRb proteins in the senescent population are found in the active form. Our data indicate that newly synthesized p16(INK4a) limits the proliferation of T lymphocytes that respond to mitogen, but is not required for the loss of mitogen responsiveness called senescence.  相似文献   

17.
18.
The p16(INK4a) cyclin-dependent kinase inhibitor has a key role in establishing stable G1 cell-cycle arrest through activating the retinoblastoma (Rb) tumour suppressor protein pRb in cellular senescence. Here, we show that the p16(INK4a) /Rb-pathway also cooperates with mitogenic signals to induce elevated intracellular levels of reactive oxygen species (ROS), thereby activating protein kinase Cdelta (PKCdelta) in human senescent cells. Importantly, once activated by ROS, PKCdelta promotes further generation of ROS, thus establishing a positive feedback loop to sustain ROS-PKCdelta signalling. Sustained activation of ROS-PKCdelta signalling irreversibly blocks cytokinesis, at least partly through reducing the level of WARTS (also known as LATS1), a mitotic exit network (MEN) kinase required for cytokinesis, in human senescent cells. This irreversible cytokinetic block is likely to act as a second barrier to cellular immortalization ensuring stable cell-cycle arrest in human senescent cells. These results uncover an unexpected role for the p16(INK4a)-Rb pathway and provide a new insight into how senescent cell-cycle arrest is enforced in human cells.  相似文献   

19.
Telomere-independent cellular senescence in human fetal cardiomyocytes   总被引:2,自引:0,他引:2  
Ball AJ  Levine F 《Aging cell》2005,4(1):21-30
  相似文献   

20.
So AY  Jung JW  Lee S  Kim HS  Kang KS 《PloS one》2011,6(5):e19503
Epigenetic regulation of gene expression is well known mechanism that regulates cellular senescence of cancer cells. Here we show that inhibition of DNA methyltransferases (DNMTs) with 5-azacytidine (5-AzaC) or with specific small interfering RNA (siRNA) against DNMT1 and 3b induced the cellular senescence of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs) and increased p16(INK4A) and p21(CIP1/WAF1) expression. DNMT inhibition changed histone marks into the active forms and decreased the methylation of CpG islands in the p16(INK4A) and p21(CIP1/WAF1) promoter regions. Enrichment of EZH2, the key factor that methylates histone H3 lysine 9 and 27 residues, was decreased on the p16(INK4A) and p21(CIP1/WAF1) promoter regions. We found that DNMT inhibition decreased expression levels of Polycomb-group (PcG) proteins and increased expression of microRNAs (miRNAs), which target PcG proteins. Decreased CpG island methylation and increased levels of active histone marks at genomic regions encoding miRNAs were observed after 5-AzaC treatment. Taken together, DNMTs have a critical role in regulating the cellular senescence of hUCB-MSCs through controlling not only the DNA methylation status but also active/inactive histone marks at genomic regions of PcG-targeting miRNAs and p16(INK4A) and p21(CIP1/WAF1) promoter regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号