首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
近些年,纳米技术在农业领域发展迅猛,推动了传统农业在交叉学科领域的不断发展和深化。目前已利用纳米载体实现了四个方面的功能与应用:纳米载体携带外源dsRNA突破害虫体壁屏障,调控害虫生长发育;纳米载体携带专性病毒DNA毒杀非寄主害虫,扩大病毒防治谱;纳米载体携带Bt毒蛋白高效杀死非敏感害虫,治理害虫抗药性;纳米载体携带杀虫剂提升利用率、降低使用量、拓展防治谱。本文结合最新研究进展,重点介绍了纳米技术在害虫绿色防控领域的研究进展和应用现状,并对纳米技术在绿色防控领域的研究与应用作了展望。  相似文献   

2.
首次报道了湘西植物性农药资源状况:含有毒杀虫剂植物102种,分别隶属53属31科;含昆虫激素杀虫剂植物10科,12属.简要报道了28种主要杀虫剂植物防治害虫的范围,种类分布范围和生境,概述了应用植物性农药的效果好、降解快、无污染的特点,认为应用植物性农药是21世纪农业害虫防治的方向,也是湘西建设生态州的措施之一.  相似文献   

3.
李晶  郭亮  崔海信  崔博  刘国强 《植物学报》2020,55(4):513-528
农药是一类用于防治作物病虫草害、保障粮食生产与安全的化学物质。传统农药剂型载药粒子粒径粗大, 有效利用率低, 用量大, 对生态环境造成严重危害。农药纳米剂型可以提高载药系统的分散性、稳定性及生物活性, 是克服传统剂型功能缺陷、提高农药有效利用率、减少环境污染的重要科学途径。研究纳米农药粒子在植物体内的吸收与转运行为, 对于理解纳米农药与植物的互作方式, 揭示其在植物体内的吸收作用机制及生物累积效应, 以及明确其生物安全性具有重要意义。该文从纳米农药在植物体内的吸收转运影响因素、机制、分析方法及其生物安全性4个方面进行综述, 阐明了无机和有机纳米农药在植物体内的吸收转运模式及研究手段, 并展望了其应用前景, 以期为纳米农药的设计、构建及合理安全使用提供理论与技术支撑。  相似文献   

4.
农药是一类用于防治作物病虫草害、保障粮食生产与安全的化学物质。传统农药剂型载药粒子粒径粗大,有效利用率低,用量大,对生态环境造成严重危害。农药纳米剂型可以提高载药系统的分散性、稳定性及生物活性,是克服传统剂型功能缺陷、提高农药有效利用率、减少环境污染的重要科学途径。研究纳米农药粒子在植物体内的吸收与转运行为,对于理解纳米农药与植物的互作方式,揭示其在植物体内的吸收作用机制及生物累积效应,以及明确其生物安全性具有重要意义。该文从纳米农药在植物体内的吸收转运影响因素、机制、分析方法及其生物安全性4个方面进行综述,阐明了无机和有机纳米农药在植物体内的吸收转运模式及研究手段,并展望了其应用前景,以期为纳米农药的设计、构建及合理安全使用提供理论与技术支撑。  相似文献   

5.
5-氨基乙酰丙酸是一种新型农药,由于其在环境中易降解,无残留,对人蓄无毒性,所以是一种无公害的绿色农药而倍受关注,在农业领域应用非常广泛,主要应用于植物生长调节剂、绿色除草剂、杀虫剂等方面,还可以应用到医学、有机合成等方面。本文主要综述了生物合成五氨基乙酰丙酸的途径,同时还介绍了五氨基乙酰丙酸作为一种调节剂、新型农药、杀虫剂的研究进展及在医学领域的发展。以期为科研和生产提供指导。  相似文献   

6.
5-氨基乙酰丙酸是一种新型农药,由于其在环境中易降解,无残留,对人蓄无毒性,所以是一种无公害的绿色农药而倍受关注,在农业领域应用非常广泛,主要应用于植物生长调节剂、绿色除草剂、杀虫剂等方面,还可以应用到医学、有机合成等方面.本文主要综述了生物合成五氨基乙酰丙酸的途径,同时还介绍了五氨基乙酰丙酸作为一种调节剂、新型农药、杀虫剂的研究进展及在医学领域的发展.以期为科研和生产提供指导.  相似文献   

7.
野生植物资源与生物合理性农药   总被引:24,自引:0,他引:24  
本文对我国具有杀虫作用的野生植物资源及其杀虫有效成分的研究进行了评述。从植物与害虫的相互关系出发,论述了使用植物性杀虫剂在害虫治理中的考物合理性,对开发新型的考物合理性农药作出评述,并就我国利用野生植物资源研究开发植物性杀虫剂提出建议。  相似文献   

8.
害虫经济阈值(Economicthreshold,ET)作为农业害虫管理关键决策依据,是主要基于挽回作物损失的价值和防治费用的农业害虫防治经济阈值。在实践应用中,由于对害虫防治措施的生态代价考虑不足,往往导致阈值指标偏低,防治次数和农药使用量偏多。本文利用农药生态效应评估的最新研究进展,提出了充分考虑防治费用和防治生态代价的农业害虫防治生态经济阈值(Ecological and economic threshold,EET)概念,给出了基于农药生态风险指数的简便易行的数学模型和估算方法。生态经济阈值的提出与推广应用,不仅为现代农业害虫防治决策提供了科学依据,而且有助于我国的农药减量目标的实现。  相似文献   

9.
化学杀虫剂是农业害虫防治的主要手段,然而农业害虫已对化学杀虫剂产生了抗药性。RNA农药的应用将是减少使用化学杀虫剂的一种途径。RNA农药具有专一、高效、易降解和对环境友好等优点而受到了关注,但在靶标分子、靶标分子的双链RNA(dsRNA)生产工艺和应用制剂等方面仍需进一步研究。本研究以褐飞虱Nilaparvata lugens蛋白激酶B基因的dsRNA(dsNlAKT)为例,对利用细菌体系生产dsRNA的方法进行了探究。将NlAKT构建进L4440载体后,将其转化到缺乏核酸酶(RNase Ⅲ)的大肠杆菌Escherichia coli HT115(DE3)中,进行了dsRNA生产条件的测试。结果表明:(1)当异丙基-β-D-硫代半乳糖苷(IPTG)工作浓度为0.1 mM或0.5 mM时dsRNA的产量没有明显变化,而当其工作浓度增加至1 mM时dsRNA产量明显减少;(2)在IPTG诱导时间为2~8 h范围内,添加IPTG后诱导6 h获得的dsRNA产量最多;(3)在实验室常规提取RNA方法中,增加低剂量溶菌酶预处理这一步骤可增加提取产物中dsRNA的含量。试验结果证明了采用工作浓度为0.1 mM的IPTG诱导6 h的生产条件,并在提取过程中增加溶菌酶的预处理步骤有助于获得较高的dsRNA含量。研究结果为RNA农药的生产条件提供了实验依据。  相似文献   

10.
金属型纳米颗粒对植物的生态毒理效应研究进展   总被引:2,自引:0,他引:2  
纳米技术的高速发展和人工纳米颗粒(NPs)的广泛应用带来的潜在环境风险已经引起国内外的广泛关注.金属型纳米颗粒(MB NPs)具有金属毒性和纳米毒性的双重效应,其生物毒性和生态风险已成为纳米毒理学的研究热点之一.植物作为生态系统中的重要组分,是NPs生物累积并进入食物链的潜在途径.本文论述了MB NPs在植物中的吸收、转运和累积过程,总结了MB NPs对植物的毒性效应及其机制,探讨了MB NPs植物毒性的影响因素,综合评述了近年来关于MB NPs对植物特别是农作物的生态毒理效应的研究进展,同时分析了目前研究中存在的问题,对今后的研究方向进行了展望.  相似文献   

11.
诱集植物在农业中的应用研究进展与展望   总被引:1,自引:0,他引:1  
全世界每年因病虫害导致严重的农业经济损失, 为了减少病虫害的发生, 实际生产中通常使用大量化学农药, 然而农药的大量施用, 不仅造成环境污染和农产品安全问题, 还会使病虫害产生抗药性, 天敌种群受损, 从而导致病虫害爆发日益严重。种植诱集植物是一种环境友好型病虫害防控方法, 该方法主要是通过诱集植物吸引虫害和降低病害, 从而减少病虫害对主栽作物的危害, 达到保护主栽作物的目的, 最终减少农业上化学农药的使用。根据诱集植物自身特性, 将其分为五种主导作用类型: 传统诱集植物、致死型诱集植物、基因工程型诱集植物、生物辅助控制型诱集植物、化学信息素辅助作用型诱集植物等, 根据种植和利用方式, 将其分为: 围种诱集、间种诱集、连作诱集、与其它方式结合等。尽管关于诱集植物的研究已有近160年历史, 但有关高效诱集植物的筛选、诱集植物与主栽作物的优化配置模式与配套种植技术、诱集植物对靶标病虫害的作用机理、诱集植物在农业生产中的生态风险评估等仍不清楚, 且诱集植物仍具有较大开发潜力和应用价值, 如(1)开发应用诱集植物的环境污染修复功能及相关技术; (2)开发应用诱集植物的景观生态与休闲旅游功能及相关技术; (3)开发利用诱集植物对土壤的养分转化与固持提升功能(如固氮、固碳、固土功能等)、生物质能源功能、节能减排功能及相关技术; (4)开发应用诱集植物及其废弃物的经济产品功能及其可持续生产技术。论文综述了近年来国内外有关诱集植物的相关研究与实践应用, 旨在为诱集植物在农业生产中进行病虫害防治研究和应用提供相关参考。  相似文献   

12.
Antimicrobial peptides have captured the attention of researchers in recent years because of their efficiency in fighting against pathogens. These peptides are found in nature and have been isolated from a wide range of organisms. Furthermore, analogs or synthetic derivatives have successfully been developed on the basis of natural peptide patterns. Long use of pesticides and antibiotics has led to development of resistance among pathogens and other pests as well as increase of environmental and health risks. Antimicrobial peptides are under consideration as new substitutes for conventional pesticides and antibiotics. Many plants and animals have been manipulated with antimicrobial peptide-encoding genes and several pesticides and drugs have been produced based on these peptides. Such strategies and products may still have a long way to go before being confirmed by regulatory bodies and others need to surmount technical problems before being accepted as applicable ones. In spite of these facts, several cases of successful use of antimicrobial peptides in agriculture and food industry indicate a promising future for extensive application of these peptides. In this review, we consider the developing field of antimicrobial peptide applications in various agricultural activities.  相似文献   

13.
The increasing demand for a steady, healthy food supply requires an efficient control of the major pests and plant diseases. Current management practices are based largely on the application of synthetic pesticides. The excessive use of agrochemicals has caused serious environmental and health problems. Therefore, there is a growing demand for new and safer methods to replace or at least supplement the existing control strategies. Biological control, that is, the use of natural antagonists to combat pests or plant diseases has emerged as a promising alternative to chemical pesticides. The Bacilli offer a number of advantages for their application in agricultural biotechnology. Several Bacillus-based products have been marketed as microbial pesticides, fungicides or fertilisers. Bacillus-based biopesticides are widely used in conventional agriculture, by contrast, implementation of Bacillus-based biofungicides and biofertilizers is still a pending issue.  相似文献   

14.
Nanotechnology is a promising field of interdisciplinary research. It opens up a wide array of opportunities in various fields like medicine, pharmaceuticals, electronics and agriculture. The potential uses and benefits of nanotechnology are enormous. These include insect pests management through the formulations of nanomaterials-based pesticides and insecticides, enhancement of agricultural productivity using bio-conjugated nanoparticles (encapsulation) for slow release of nutrients and water, nanoparticle-mediated gene or DNA transfer in plants for the development of insect pest-resistant varieties and use of nanomaterials for preparation of different kind of biosensors, which would be useful in remote sensing devices required for precision farming. Traditional strategies like integrated pest management used in agriculture are insufficient, and application of chemical pesticides like DDT have adverse effects on animals and human beings apart from the decline in soil fertility. Therefore, nanotechnology would provide green and efficient alternatives for the management of insect pests in agriculture without harming the nature. This review is focused on traditional strategies used for the management of insect pests, limitations of use of chemical pesticides and potential of nanomaterials in insect pest management as modern approaches of nanotechnology.  相似文献   

15.
Intensive agriculture is spectacularly successful since last couple of decades due to the inputs viz; fertilizers and pesticides along with high yielding varieties. The mandate for agriculture development was to feed and adequate nutrition supply to the expanding population by side the agriculture would be entering to into new area of commercial and export orientation. The attention of public health and proper utilization natural resources are also the main issues related with agriculture development. Concern for pesticide contamination in the environment in the current context of pesticide use has assumed great importance [1]. The fate of the pesticides in the soil environment in respect of pest control efficacy, non-target organism exposure and offsite mobility has been given due consideration [2]. Kinetics and pathways of degradation depend on abiotic and biotic factors [6], which are specific to a particular pesticide and therefore find preference. Adverse effect of pesticidal chemicals on soil microorganisms [3], may affect soil fertility [4] becomes a foreign chemicals major issue. Soil microorganisms show an early warning about soil disturbances by foreign chemicals than any other parameters. But the fate and behavior of these chemicals in soil ecosystem is very important since they are degraded by various factors and have the potential to be in the soil, water etc. So it is indispensable to monitor the persistence, degradation of pesticides in soil and is also necessary to study the effect of pesticide on the soil quality or soil health by in depth studies on soil microbial activity. The removal of metabolites or degraded products should be removed from soil and it has now a day’s primary concern to the environmentalist. Toxicity or the contamination of pesticides can be reduced by the bioremediation process which involves the uses of microbes or plants. Either they degrade or use the pesticides by various co metabolic processes.  相似文献   

16.
17.
Extensive use of chemical insecticides to control insect pests in agriculture has improved yields and production of high-quality food products. However, chemical insecticides have been shown to be harmful also to beneficial insects and many other organisms like vertebrates. Thus, there is a need to replace those chemical insecticides by other control methods in order to protect the environment. Insect pest pathogens, like bacteria, viruses or fungi, are interesting alternatives for production of microbial-based insecticides to replace the use of chemical products in agriculture. Organic farming, which does not use chemical pesticides for pest control, relies on integrated pest management techniques and in the use of microbial-based insecticides for pest control. Microbial-based insecticides require precise formulation and extensive monitoring of insect pests, since they are highly specific for certain insect pests and in general are more effective for larval young instars. Here, we analyse the possibility of using microbial-based insecticides to replace chemical pesticides in agricultural production.  相似文献   

18.
Pesticides are substances that have been widely used throughout the world to kill, repel, or control organisms such as certain forms of plants or animals considered as pests. Depending on their type, dose, and persistence in the environment, they can have impact even on non-target species such as beneficial insects (honeybees) in different ways, including reduction in their survival rate and interference with their reproduction process. Honeybee Apis mellifera is a major pollinator and has substantial economical and ecological values. Colony collapse disorder (CCD) is a mysterious phenomenon in which adult honeybee workers suddenly abandon from their hives, leaving behind food, brood, and queen. It is lately drawing a lot of attention due to pollination crisis as well as global agriculture and medical demands. If the problem of CCD is not resolved soon enough, this could have a major impact on food industry affecting world’s economy a big time. Causes of CCD are not known. In this overview, I discuss CCD, biogenic amines-based-pesticides (neonicotinoids and formamidines), and their disruptive effects on biogenic amine signaling causing olfactory dysfunction in honeybees. According to my hypothesis, chronic exposure of biogenic amines-based-pesticides to honeybee foragers in hives and agricultural fields can disrupt neural cholinergic and octopaminergic signaling. Abnormality in biogenic amines-mediated neuronal signaling impairs their olfactory learning and memory, therefore foragers do not return to their hive – a possible cause of CCD. This overview is an attempt to discuss a hypothetical link among biogenic amines-based pesticides, olfactory learning and memory, and CCD.  相似文献   

19.
In spite of intensive research on plant natural products and insect-plant chemical interactions over the past three decades, only two new types of botanical insecticides have been commercialized with any success in the past 15 years, those based on neem seed extracts (azadirachtin), and those based on plant essential oils. Certain plant essential oils, obtained through steam distillation and rich in mono- and sesquiterpenes and related phenols, are widely used in the flavouring and fragrance industries and in aromatherapy. Some aromatic plants have traditionally been used for stored product protection, but the potential for development of pesticides from plant essential oils for use in a wide range of pest management applications has only recently been realized. Many plant essential oils and their major terpenoid constituents are neurotoxic to insects and mites and behaviourally active at sublethal concentrations. Most plant essential oils are complex mixtures. In our laboratory we have demonstrated that individual constituents of oils rarely account for a major share of the respective oil’s toxicity. Further, our results suggest synergy among constituents, including among those that appear non-toxic in isolation. Repellent effects may be particularly useful in applications against public health and domestic pests, but may be useful in specific agricultural applications as well. In all of these applications, there is a premium on human and animal safety that takes priority over absolute efficacy. In agriculture, the main market niche for essential oil-based pesticides is in organic food production, at least in developed countries, where there are fewer competing pest management products. There is also scope for mixing these oils with conventional insecticides and for enhancing their efficacy with natural synergists. Some examples of field efficacy against agricultural pests are discussed.  相似文献   

20.
利用农业生物多样性持续控制有害生物   总被引:6,自引:0,他引:6  
高东  何霞红  朱书生 《生态学报》2011,31(24):7617-7624
农业生物多样性对保障全球粮食安全和农业可持续发展至关重要.人类在多样性的形成上发挥了关键作用,人类结合自然进化创造了遗传多样性、物种多样性和生态系统多样性.农业生物多样性发挥了很多社会经济和环境功能:保障粮食安全;维持农业生态系统可持续发展;赋予农村经济适变性.但当前人类毁灭农业生物多样性的速度更为惊人.在总结石油农业单一化种植的生态负效应、传统农业提倡“天人合一”的生态正效应的基础上,分析讨论了利用农业生物多样性持续控制有害生物的必要性和可行性,从生态系统多样性、物种多样性和种内遗传多样性3个层次,归纳了构建和恢复农田生物多样性的基本方法.基于病理学、生态学、营养学和生理学等学科领域,从群体异质效应、稀释效应、微生态效应、诱导抗性效应、物理阻隔效应、生理学效应和化感效应等7个方面,归纳了利用农业生物多样性持续控制有害生物的基础原理.寻求低投入、高效益、多样化和可持续的农业生产系统是当今世界许多科学家、决策者和生产者共同关心的问题.农业生物多样性具有重要的生态作用,在现代农业框架下,是合情合理构建持续、稳定、健康、高产的农田生态系统,持续控制有害生物的金钥匙.为此必须加强四方面的课题研究:各种作物之间的相生相克关系及其作用机理;各种有害生物的主要天敌种类、生物学、生态学特性及其适生环境;利用农业生物多样性全面、持续控制有害生物的农业生产模式;与其相配套的农艺措施与农业机械.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号