首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
生物多样性是说环境和生物形成的复杂生态系统以及生态过程的总称。生物多样性属于广泛概念,主要包括三种层次生态系统多样性、物种多样性、遗传多样性,从长远发展来说,生物多样性主要价值就是能够为全球环境变化和区域适应性提供依据和保障,所以,如果能够拥有丰富生物多样性,未来就会存在很多发展机会。  相似文献   

2.
中国森林冠层生物多样性监测   总被引:1,自引:0,他引:1  
林冠作为森林与外界环境相互作用最直接和最活跃的关键生态界面,承载了森林生物多样性的主体,在生物多样性的形成与维持以及生态系统功能过程中发挥着重要的作用,被称为地球的"第八大洲"。同时,林冠对气候变化和人为干扰高度敏感,在人类活动和全球气候变化加剧的背景下,森林生态系统正面临着严重的威胁,首当其冲的就是森林冠层。气候变化下的林冠生物多样性保护与可持续利用已成为现代生态学研究的热点问题,受到森林生态学、气候学、环境科学等研究领域的学者越来越多的关注。据此,中国生物多样性监测与研究网络以网络内拥有森林冠层塔吊的生物多样性监测样地为平台,建立了林冠生物多样性监测专项网。该专项网将参照国际标准,统一监测指标,规范监测标准,通过大尺度地带性森林冠层内植物(包括附生种子植物和附生孢子植物)多样性、动物多样性、微生物多样性及其动态变化的长期监测,结合林冠小气候环境特征监测,建立林冠小环境特征、植物多样性、节肢动物多样性和微生物多样性等4个动态更新的数据库,以阐明我国典型森林林冠生物多样性变化的规律,揭示其对森林生态系统功能过程的影响和对全球变化的响应。  相似文献   

3.
豫西山区日本落叶松林下植物物种多样性的研究   总被引:1,自引:0,他引:1  
陶福禄  李树人 《生态学杂志》1998,17(4):1-6,F004
生物多样性是指各种生命形式的资源,它包括地球上所有植物、动物、微生物物种及它们所有基因,以及生物与其环境相互作用形式的生态系统与生物过程,它包括三个层次,即遗传多样性、物种多样性与生态系统多样性[1]。生物多样性对人类生存与发展,以及对维持整个地球的...  相似文献   

4.
遗传多样性及其保存   总被引:1,自引:0,他引:1  
生物多样性,包括生态系统、物种和遗传(基因)的多样性,是近年来国际社会讨论的一个热门话题。其内容涉及生物多样性的形成、现状及其评价;生物多样性消失的原因及其深远影响;生物多样性的保护和保存等。其中遗传多样性,包括微生物、植物、动物和人的遗传多样性可能是问题的核心。本文仅就动物遗传多样性研究的若干问题,结合我们的工作作一介绍。  相似文献   

5.
寒武纪大爆发是地球历史上唯一的动物门类创生事件, 导致所有现生动物门类几乎同时在寒武纪早期海洋中首现——地球动物树成型。显生宙之后的其他重大地质事件甚至动植物登陆过程中地球再无新的动物门类出现。因此, 寒武纪大爆发既是重大生命事件也是地质事件, 成为地球宜居性演化研究的关键。国内外许多研究团队和学者从不同的视角对寒武纪大爆发做了深入探索和思考, 取得了系列成果和认识。基于生命物质的组织层次(organismal hierarchical level)及其地质背景, 本文提出了地球早期生命宏演化包括分子水平进化、细胞水平进化和组织水平进化三大宏演化阶段。据此, 认为寒武纪大爆发的实质是原生生物细胞群“组织化”的必然结果, 并提出寒武纪动物大爆发组织“拼图”新假说(Lego Blocks Hypothesis)。寒武纪动物大爆发的突发性和爆发性是在现代板块构造体制建立和异养型消费者生态位空缺的背景下, 在全球圈层联动、全球海洋微生物和化学循环的促使下, 部分真核细胞发生“分化和特化”形成原始组织后, 快速“拼图组装”的必然结果。期间, 地球海洋生态空间(生态位)多样性剧增、动物消费者生态位空缺及其导致的古地理和生殖隔离, 成为寒武纪早期动物门类爆发的生态动力和生物发育内在需求。罗迪尼亚超大陆裂解和冈瓦纳大陆形成过程中, 全板块深俯冲为标志的现代板块构造体制的建立, 导致全球圈层联动和全球海洋微生物化学循环, 进一步加速了动物门类的生态扩张。显生宙盘古大陆演化和原、古、新特提斯洋发育过程中全球海洋生态空间多样性阈值的稳定甚至减少, 可能成为寒武纪大爆发后地球海洋再无新的动物门类出现的环境条件和地质背景制约。  相似文献   

6.
高梅香  林琳  常亮  孙新  刘冬  吴东辉 《生物多样性》2018,26(10):1034-569
群落空间格局和构建机制一直是生态学研究的核心内容。在生物多样性严重丧失的背景下, 揭示群落空间格局及其构建机制, 有助于深刻理解生物多样性丧失的原因, 更有助于应对生物多样性保护等重大生态环境问题。然而, 陆地生态系统的研究多集中于地上生物群落, 对地下生态系统, 尤其是土壤动物空间格局和构建机制的研究尚不充分。事实上, 土壤动物多样性是全球生物多样性的关键组成之一, 是地下生态系统结构和功能维持的重要部分。对土壤动物空间格局和构建机制的研究, 能明确不同空间尺度条件下土壤动物多样性的维持机制。土壤动物群落常在多种空间尺度形成复杂的空间分布格局, 因此, 本文首先介绍了不同空间尺度主要土壤动物群落的空间自相关性特征, 阐述了土壤动物群落斑块和孔隙镶嵌分布的复杂空间格局。继而阐明这种空间格局主要受生物间作用、环境过滤和随机扩散的调控, 并说明这三个过程对土壤动物群落的调控能力和作用方式。作者提出, 这三个过程仍是今后土壤动物群落空间格局和构建机制研究的重点内容, 需要进一步加强以土壤动物为研究对象的群落构建理论的验证和发展。我国土壤动物群落空间格局和构建机制起步较晚, 希望本文能够促进我国土壤动物生态学相关领域的研究。  相似文献   

7.
保护人类赖以生存和发展的生物多样性,保证生物资源永续利用,实现可持续发展,是全球性的问题,也是我国社会主义现代化建设进程中的一个重要问题。生物多样性是指地球上所有的动物、植物和微生物及其构成的综合体,包括生态系统多样性。物种多样性和遗传多样性不仅可为人类生活提供必不可少的生物资源,而且还形成了人类赖以生存的生物圈环境。保护生物多样性就是保护人类自身的生存和发展条件,是有益当代、造福子孙的一件大事。我国幅员辽阔,气候多样,地貌类型齐全,物种资源丰富,是世界12个生物多样性最为丰富的大国之一。因而,保…  相似文献   

8.
城市化进程加快带来的环境挑战正威胁着地球上的生物多样性。土壤动物是生物多样性的重要组成部分, 对维持土壤健康及城市生态系统稳定性具有重要意义。近年来, 城市土壤动物群落结构和多样性的研究已经取得了一定进展, 但是仍缺乏系统的总结和综述。基于此, 本文梳理归纳了国内外已有的相关文献, 总结了城市化影响土壤动物的主要途径, 并阐述了城市中不同体型大小的优势土壤动物类群对城市化的响应。本文建议未来应利用分子生物学手段深入解析城市土壤动物多样性, 明晰城市土壤食物网的结构与功能, 关注土壤动物群落的保护与恢复, 揭示城市土壤动物肠道微生物组特征, 并挖掘城市土壤动物抑制人类致病菌的潜力, 以期为城市生物多样性保护、生态系统稳定和人类健康维持提供相关科学依据。  相似文献   

9.
全球变化对土壤动物多样性的影响   总被引:2,自引:0,他引:2  
陆地生态系统由地上和地下两部分组成,二者相互作用共同影响生态系统过程和功能.土壤动物在生物地球化学循环方面起着重要作用.随着人们对土壤动物在生态系统过程中重要性的认识,越来越多的研究表明全球变化对土壤动物多样性产生深刻影响.土地利用方式的改变、温度增加和降雨格局的改变能直接影响土壤动物多样性.CO2浓度和氮沉降的增加主要通过影响植物群落结构、组成和化学成分对土壤动物多样性产生间接影响.不同环境因子之间又能相互作用共同影响土壤动物多样性.了解全球变化背景下不同驱动因子及其交互作用对土壤动物多样性的影响,有助于更好地预测未来土壤动物多样性及相关生态学过程的变化.  相似文献   

10.
全球变化对土壤动物多样性的影   总被引:1,自引:0,他引:1  
吴廷娟 《生态学杂志》2013,24(2):581-588
陆地生态系统由地上和地下两部分组成,二者相互作用共同影响生态系统过程和功能.土壤动物在生物地球化学循环方面起着重要作用.随着人们对土壤动物在生态系统过程中重要性的认识,越来越多的研究表明全球变化对土壤动物多样性产生深刻影响.土地利用方式的改变、温度增加和降雨格局的改变能直接影响土壤动物多样性.CO2浓度和氮沉降的增加主要通过影响植物群落结构、组成和化学成分对土壤动物多样性产生间接影响.不同环境因子之间又能相互作用共同影响土壤动物多样性.了解全球变化背景下不同驱动因子及其交互作用对土壤动物多样性的影响,有助于更好地预测未来土壤动物多样性及相关生态学过程的变化.  相似文献   

11.
12.
13.
14.
15.
On the origin of the Hirudinea and the demise of the Oligochaeta   总被引:10,自引:0,他引:10  
The phylogenetic relationships of the Clitellata were investigated with a data set of published and new complete 18S rRNA gene sequences of 51 species representing 41 families. Sequences were aligned on the basis of a secondary structure model and analysed with maximum parsimony and maximum likelihood. In contrast to the latter method, parsimony did not recover the monophyly of Clitellata. However, a close scrutiny of the data suggested a spurious attraction between some polychaetes and clitellates. As a rule, molecular trees are closely aligned with morphology-based phylogenies. Acanthobdellida and Euhirudinea were reconciled in their traditional Hirudinea clade and were included in the Oligochaeta with the Branchiobdellida via the Lumbriculidae as a possible link between the two assemblages. While the 18S gene yielded a meaningful historical signal for determining relationships within clitellates, the exact position of Hirudinea and Branchiobdellida within oligochaetes remained unresolved. The lack of phylogenetic signal is interpreted as evidence for a rapid radiation of these taxa. The placement of Clitellata within the Polychaeta remained unresolved. The biological reality of polytomies within annelids is suggested and supports the hypothesis of an extremely ancient radiation of polychaetes and emergence of clitellates.  相似文献   

16.
17.
18.
19.
Data on the ontogeny of the posterior haptor of monogeneans were obtained from more than 150 publications and summarised. These data were plotted into diagrams showing evolutionary capacity levels based on the theory of a progressive evolution of marginal hooks, anchors and other attachment components of the posterior haptor in the Monogenea (Malmberg, 1986). 5 + 5 unhinged marginal hooks are assumed to be the most primitive monogenean haptoral condition. Thus the diagrams were founded on a 5 + 5 unhinged marginal hook evolutionary capacity level, and the evolutionary capacity levels of anchors and other haptoral attachement components were arranged according to haptoral ontogenetical sequences. In the final plotting diagram data on hosts, type of spermatozoa, oncomiracidial ciliation, sensilla pattern and protonephridial systems were also included. In this way a number of correlations were revealed. Thus, for example, the number of 5 + 5 marginal hooks correlates with the most primitive monogenean type of spermatozoon and with few sensillae, many ciliated cells and a simple protonephridial system in the oncomiracidium. On the basis of the reviewed data it is concluded that the ancient monogeneans with 5 + 5 unhinged marginal hooks were divided into two main lines, one retaining unhinged marginal hooks and the other evolving hinged marginal hooks. Both main lines have recent representatives at different marginal hook evolutionary capacity levels, i.e. monogeneans retaining a haptor with only marginal hooks. For the main line with hinged marginal hooks the name Articulon-choinea n. subclass is proposed. Members with 8 + 8 hinged marginal hooks only are here called Proanchorea n. superord. Monogeneans with unhinged marginal hooks only are here called Ananchorea n. superord. and three new families are erected for its recent members: Anonchohapteridae n. fam., Acolpentronidae n. fam. and Anacanthoridae n. fam. (with 7 + 7, 8 + 8 and 9 + 9 unhinged marginal hooks, respectively). Except for the families of Articulonchoinea (e.g. Acanthocotylidae, Gyrodactylidae, Tetraonchoididae) Bychowsky's (1957) division of the Monogenea into the Oligonchoinea and Polyonchoinea fits the proposed scheme, i.e. monogeneans with unhinged marginal hooks form one old group, the Oligonchoinea, which have 5 + 5 unhinged marginal hooks, and the other group form the Polyonchoinea, which (with the exception of the Hexabothriidae) has a greater number (7 + 7, 8 + 8 or 9 + 9) of unhinged marginal hooks. It is proposed that both these names, Oligonchoinea (sensu mihi) and Polyonchoinea (sensu mihi), will be retained on one side and Articulonchoinea placed on the other side, which reflects the early monogenean evolution. Except for the members of Ananchorea [Polyonchoinea], all members of the Oligonchoinea and Polyonchoinea have anchors, which imply that they are further evolved, i.e. have passed the 5 + 5 marginal hook evolutionary capacity level (Malmberg, 1986). There are two main types of anchors in the Monogenea: haptoral anchors, with anlages appearing in the haptor, and peduncular anchors, with anlages in the peduncle. There are two types of haptoral anchors: peripheral haptoral anchors, ontogenetically the oldest, and central haptoral anchors. Peduncular anchors, in turn, are ontogenetically younger than peripheral haptoral anchors. There may be two pairs of peduncular anchors: medial peduncular anchors, ontogentically the oldest, and lateral peduncular anchors. Only peduncular (not haptoral) anchors have anchor bars. Monogeneans with haptoral anchors are here called Mediohaptanchorea n. superord. and Laterohaptanchorea n. superord. or haptanchoreans. All oligonchoineans and the oldest polyonchoineans are haptanchoreans. Certain members of Calceostomatidae [Polyonchoinea] are the only monogeneans with both (peripheral) haptoral and peduncular anchors (one pair). These monogeneans are here called Mixanchorea n. superord. Polyonchoineans with peduncular anchors and unhinged marginal hooks are here called the Pedunculanchorea n. superord. The most primitive pedunculanchoreans have only one pair of peduncular anchors with an anchor bar, while the most advanced have both medial and lateral peduncular anchors; each pair having an anchor bar. Certain families of the Articulonchoinea, the Anchorea n. superord., also have peduncular anchors (parallel evolution): only one family, the Sundanonchidae n. fam., has both medial and lateral peduncular anchors, each anchor pair with an anchor bar. Evolutionary lines from different monogenean evolutionary capacity levels are discussed and a new system of classification for the Monogenea is proposed.In agreeing to publish this article, I recognise that its contents are controversial and contrary to generally accepted views on monogenean systematics and evolution. I have anticipated a reaction to the article by inviting senior workers in the field to comment upon it: their views will be reported in a future issue of this journal. EditorIn agreeing to publish this article, I recognise that its contents are controversial and contrary to generally accepted views on monogenean systematics and evolution. I have anticipated a reaction to the article by inviting senior workers in the field to comment upon it: their views will be reported in a future issue of this journal. Editor  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号