首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Challenging students to independently design and implement experiments is a powerful way to teach the scientific method while engaging with STEM‐related course material. For ecology and organismal biology, such experiences often take the form of field work. The COVID‐19 pandemic presented formidable challenges for instructors of such courses: How can students conduct any experiments, much less ones of their own design, when they might not even have access to campus? Here we describe a student‐led field project exploring invertebrate herbivory in terrestrial plant systems. Designed to flexibly accommodate student groups working either in‐person, remotely, or both, the project would be suitable for invertebrate biology, plant biology, or general ecology courses at the college or high school level. We describe our implementation in two sections of a sophomore‐level course, provide specific advice based on our experiences, make suggestions for future improvements or adaptations, and provide all the written materials that instructors would need to implement this in their own teaching.  相似文献   

3.
4.
During the Spring Semester of 2020, an outbreak of a novel coronavirus (SARS‐CoV‐2) and the illnesses it caused (COVID‐19) led to widespread cancelling of on‐campus instruction at colleges and universities in the United States and other countries around the world. Response to the pandemic in university settings included a rapid and unexpected shift to online learning for faculty and students. The transition to teaching and learning online posed many challenges, and the experiences of students during this crisis may inform future planning for distance learning experiences during the ongoing pandemic and beyond. Herein, we discuss the experiences of first‐ and second‐year university students enrolled in a biology seminar course as their classes migrated to online environments. Drawing on reported student experiences and prior research and resources, we discuss the ways we will adjust our own teaching for future iterations of the course while offering recommendations for instructors tasked with teaching in online environments.  相似文献   

5.
The use of theory and simulation in undergraduate education in biochemistry, molecular biology, and structural biology is now common, but the skills students need and the curriculum instructors have to train their students are evolving. The global pandemic and the immediate switch to remote instruction forced instructors to reconsider how they can use computation to teach concepts previously approached with other instructional methods. In this review, we survey some of the curricula, materials, and resources for instructors who want to include theory, simulation, and computation in the undergraduate curriculum. There has been a notable progression from teaching students to use discipline-specific computational tools to developing interactive computational tools that promote active learning to having students write code themselves, such that they view computation as another tool for solving problems. We are moving toward a future where computational skills, including programming, data analysis, visualization, and simulation, will no longer be considered an optional bonus for students but a required skill for the 21st century STEM (Science, Technology, Engineering, and Mathematics) workforce; therefore, all physical and life science students should learn to program in the undergraduate curriculum.  相似文献   

6.
Teaching ecology effectively and experientially has become more challenging for at least two reasons today. Most experiences of our students are urban, and we now face the near immediate and continuing need to deliver courses (either partially or wholly) online because of COVID‐19. Therefore, providing a learning experience that connects students to their environment within an ecological framework remains crucial and perhaps therapeutic to mental health. Here, we describe how prior to the pandemic we adapted our field‐based laboratories to include data collection, analysis, and interpretation, along with the development of a citizen‐science approach for online delivery. This design is simple to implement, does not require extensive work, and maintains the veracity of original learning outcomes. Collaboration online following field data collection in ecology courses within the context of cities offers further options to adapt to student experience levels, resource availability, and accessibility, as well as bringing instructors and students together to build an open well‐curated data set that can be used in ecology courses where no laboratories are available. Finally, it promotes an open collaboration among ecology instructors that can drive lasting conversations about ecology curriculum.  相似文献   

7.
8.
Enrollment in courses taught remotely in higher education has been on the rise, with a recent surge in response to a global pandemic. While adapting this form of teaching, instructors familiar with traditional face‐to‐face methods are now met with a new set of challenges, including students not turning on their cameras during synchronous class meetings held via videoconferencing. After transitioning to emergency remote instruction in response to the COVID‐19 pandemic, our introductory biology course shifted all in‐person laboratory sections into synchronous class meetings held via the Zoom videoconferencing program. Out of consideration for students, we established a policy that video camera use during class was optional, but encouraged. However, by the end of the semester, several of our instructors and students reported lower than desired camera use that diminished the educational experience. We surveyed students to better understand why they did not turn on their cameras. We confirmed several predicted reasons including the most frequently reported: being concerned about personal appearance. Other reasons included being concerned about other people and the physical location being seen in the background and having a weak internet connection, all of which our exploratory analyses suggest may disproportionately influence underrepresented minorities. Additionally, some students revealed to us that social norms also play a role in camera use. This information was used to develop strategies to encourage—without requiring—camera use while promoting equity and inclusion. Broadly, these strategies are to not require camera use, explicitly encourage usage while establishing norms, address potential distractions, engage students with active learning, and understand your students’ challenges through surveys. While the demographics and needs of students vary by course and institution, our recommendations will likely be directly helpful to many instructors and also serve as a model for gathering data to develop strategies more tailored for other student populations.  相似文献   

9.
Traditional forms of higher learning include teaching in the classroom on college campuses and in‐person adult‐focused public outreach events for non‐students. Online college degree programs and public outreach platforms have been steadily emerging, and the COVID‐19 pandemic has, at least temporarily, forced all related ecology and evolutionary biology programs to move to online delivery. Podcasting is a form of online mass communication that is rapidly gaining popularity and has the flexibility to be incorporated into the pedagogical toolbox for the online classroom and remote public outreach programming. Podcasting is also becoming more popular in the ecology and evolutionary biology field. Here, we describe the great potential of podcasting to transform the learning experience, present a case study of success from the United States, provide a table of podcast recommended by ecologist responding to a listserv, and provide a road map for adoption and utilization of podcasting for the future.  相似文献   

10.
The COVID-19 pandemic is shifting teaching to an online setting all over the world. The Galaxy framework facilitates the online learning process and makes it accessible by providing a library of high-quality community-curated training materials, enabling easy access to data and tools, and facilitates sharing achievements and progress between students and instructors. By combining Galaxy with robust communication channels, effective instruction can be designed inclusively, regardless of the students’ environments.  相似文献   

11.
A challenge in the Bachelor's studies in Biology is to strike a balance between reducing the teaching of practical scientific experiments to what is feasible in a short time, and teaching “real” science in undergraduate laboratories for high numbers of participants. We describe a laboratory in behavioral biology, with the primary focus on the student learning. However, also the underlying scientific question and the results of the experiment, namely the behavior of the three‐spined stickleback (Gasterosteus aculeatus) in a trade‐off situation during foraging, is without a doubt timely and sufficient for scientific studies on this subject, and this through the experiments conducted and data collected by the students. The students rated this laboratory well and learned at the end that social information is certainly important, but that self‐learning can be more important, and this not only in small fish, but also for the students themselves.  相似文献   

12.
The COVID‐19 pandemic prompted a transition to remote delivery of courses that lack immersive hands‐on research experiences for undergraduate science students, resulting in a scientific research skills gap. In this report, we present an option for an inclusive and authentic, hands‐on research experience that all students can perform off‐campus. Biology students in a semester‐long (13 weeks) sophomore plant physiology course participated in an at‐home laboratory designed to study the impacts of nitrogen addition on growth rates and root nodulation by wild nitrogen‐fixing Rhizobia in Pisum sativum (Pea) plants. This undergraduate research experience, piloted in the fall semester of 2020 in a class with 90 students, was created to help participants learn and practice scientific research skills during the COVID‐19 pandemic. Specifically, the learning outcomes associated with this at‐home research experience were: (1) generate a testable hypothesis, (2) design an experiment to test the hypothesis, (3) explain the importance of biological replication, (4) perform meaningful statistical analyses using R, and (5) compose a research paper to effectively communicate findings to a general biology audience. Students were provided with an at‐home laboratory kit containing the required materials and reagents, which were chosen to be accessible and affordable in case students were unable to access our laboratory kit. Students were guided through all aspects of research, including hypothesis generation, data collection, and data analysis, with video tutorials and live virtual sessions. This at‐home laboratory provided students an opportunity to practice hands‐on research with the flexibility to collect and analyze their own data in a remote setting during the COVID‐19 pandemic. This, or similar laboratories, could also be used as part of distance learning biology courses.  相似文献   

13.
Undergraduate research experiences have been shown to increase engagement, improve learning outcomes, and enhance career development for students in ecology. However, these opportunities may not be accessible to all students, and incorporating inquiry‐based research directly into undergraduate curricula may help overcome barriers to participation and improve representation and inclusion in the discipline. The shift to online instruction during the COVID‐19 pandemic has imposed even greater challenges for providing students with authentic research experiences, but the pandemic may also provide a unique opportunity for creative projects conducted remotely. In this paper, I describe a course‐based undergraduate research experience (CURE) designed for an upper‐level ecology course at California State University, Dominguez Hills during remote learning. The primary focus of student‐led research activities was to explore the potential impacts of the depopulation of campus during the pandemic on urban coyotes (Canis latrans), for which there were increased sightings reported during this time. Students conducted two research studies, including an evaluation of urban wildlife activity, behavior, and diversity using camera traps installed throughout campus and analysis of coyote diet using data from scat dissections. Students used the data they generated and information from literature reviews, class discussions, and meetings with experts to develop a coyote monitoring and management plan for our campus and create posters to educate the public. Using the campus as a living laboratory, I aimed to engage students in meaningful research while cultivating a sense of place, despite being online. Students’ research outcomes and responses to pre‐ and post‐course surveys highlight the benefits of projects that are anchored in place‐based education and emphasize the importance of ecological research for solving real‐world problems. CUREs focused on local urban ecosystems may be a powerful way for instructors to activate ecological knowledge and capitalize on the cultural strengths of students at urban universities.  相似文献   

14.
ABSTRACT

Teaching scientific writing in biology classes is challenging for both teachers and students. This article offers and reviews several useful ‘toolkit’ items that instructors of science writing can use to improve college student success. The tools in this kit are both conceptual and practical, and include: 1) Understanding the role of student metacognition, cognitive instruction, and strategic teaching, 2) Recognition of different student writing levels, 3) Applying the writing process, 4) Demonstrational classroom revision and editing, 5) Student-teacher sentence editing, 6) Student peer editing and guided student editing, 7) Student copy-editing, 8) Reflective writing, 9) Addressing plagiarism, paraphrasing, and proper in-text citations and referencing, and 10) Using external, on campus and online resources. Additionally, we discuss the new challenges of teaching scientific writing online versus face-to-face. The discussions, approaches, and exercises presented in this paper empower teachers in assisting students in their development of a personal writing style, while simultaneously building student confidence. The tools we present augment our previous presentation of the student writing toolkit, and can improve and enhance the teaching of scientific writing to undergraduate students.  相似文献   

15.
There is a great importance for undergraduate biology students to study organisms in their natural context. Safety concerns surrounding the global COVID‐19 pandemic prevented Marine Invertebrate Zoology students at the University of Tampa from participating in traditional faculty‐led field trips during the Fall of 2020. Instead, students were assigned to conduct a diversity‐focused field trip on their own and report their findings. Here we describe considerations and methods for creating a safe and valuable self‐guided field trip assignment for upper‐level invertebrate zoology students. These methods are adaptable for a variety of different habitat types and can be conducted with little to no special equipment or training. Students were successful in completing this assignment and found it highly enriching.  相似文献   

16.
Practical teaching can give authentic learning experiences and teach valuable skills for undergraduate students in the STEM disciplines. One of the main ways of giving students such experiences, laboratory teaching, is met with many challenges such as budget cuts, increased use of virtual learning, and currently the university lockdowns due to the COVID‐19 pandemic. We highlight how at‐home do‐it‐yourself (DIY) experiments can be a good way to include physical interaction with your study organism, system, or technique to give the students a practical, authentic learning experience. We hope that by outlining the benefits of a practical, at‐home, DIY experiment we can inspire more people to design these teaching activities in the current remote teaching situation and beyond. By contributing two examples in the field of plant biology we enrich the database on experiments to draw inspiration from for these teaching methods.  相似文献   

17.
Bioinspiration is a promising lens for biology instruction as it allows the instructor to focus on current issues, such as the COVID‐19 pandemic. From social distancing to oxygen stress, organisms have been tackling pandemic‐related problems for millions of years. What can we learn from such diverse adaptations in our own applications? This review uses a seminar course on the COVID‐19 crisis to illustrate bioinspiration as an approach to teaching biology content. At the start of the class, students mind‐mapped the entire problem; this range of subproblems was used to structure the biology content throughout the entire class. Students came to individual classes with a brainstormed list of biological systems that could serve as inspiration for a particular problem (e.g., absorptive leaves in response to the problem of toilet paper shortages). After exploration of relevant biology content, discussion returned to the focal problem. Students dug deeper into the literature in a group project on mask design and biological systems relevant to filtration and transparency. This class structure was an engaging way for students to learn principles from ecology, evolution, behavior, and physiology. Challenges with this course design revolved around the interdisciplinary and creative nature of the structure; for instance, the knowledge of the participants was often stretched by engineering details. While the present class was focused on the COVID‐19 crisis, a course structured through a bioinspired approach can be applied to other focal problems, or subject areas, giving instructors a powerful method to deliver interdisciplinary content in an integrated and inquiry‐driven way.  相似文献   

18.
Since COVID‐19 hit last year, lecturers and professors have been exploring digital and other tools to teach and instruct their students. Subject Categories: S&S: Careers & Training, Methods & Resources

As Director of the Digital Pedagogy Lab at the University of Colorado in Denver, USA, Michael Sean Morris’ work took on new significance as the COVID19 pandemic hit campuses around the world. “What happened with the pandemic was a lot of people who weren''t accustomed to teaching online, or dealing with distance learning, or remote learning in any way, shape, or form, really tried to create a live classroom situation on their screen, mostly using Zoom or other similar technologies”, Morris said. “With technology now, we can do things which make us feel closer. So, we can do a Zoom; there can be synchronous chat in technologies like Slack, or discussion forums or what‐have‐you to make you feel like you''re closer, to make you feel like you''re sort of together at the same time. But the majority of online learning actually has been asynchronous, it''s been everyone coming in when they can and doing their work when they can”.Educators have been divided over the use of online learning. But this changed when a deadly pandemic forced everyone from kindergarten to university into digital spaces. Luckily, many digital tools, such as Zoom, Slack, Blackboard Collaborate, or WhatsApp, were available to enable the migration. Nonetheless, teachers, lecturers, and professors struggle to educate their students with knowledge and the hands‐on training that is paramount for teaching biology.
… teachers, lecturers and professors struggle to educate their students with knowledge and the hands‐on training that is paramount for teaching biology.
  相似文献   

19.
2020年春天,全球进入对抗新型冠状病毒(Severe Acute Respiratory Syndrome Coronavirus 2,SARS-CoV-2)感染引起的"新冠"肺炎(Coronavirus Disease,COVID-19)疫情的斗争中。为了适应全民抗"疫"的新形势,引导学生理性地、科学地认识此次病毒疫情,"病毒生物学"课程的教学从内容到形式也进行了同步设计与微调。除了将教学模式由线下教学变成线上直播,本课程结合疫情发展情况在学期初进行COVID-19的专题讲座,以及通过"COVID-19-5 min"形式每次上课进行疫情周报解读,分析国内外疫情并传授病毒流行病学相关知识。另外,对"病毒生物学"的教学计划和教学内容做了适当微调,更多关注病毒性传染疾病发展和相关科学研究的进展。通过对在线教学从教学模式、教学过程和教学内容的设计和调整,强化教学效果的反馈和改善,引导学生不信谣、不传谣,帮助学生加强对新型冠状病毒(SARS-CoV-2)及疫情的科学认识。通过教学内容和教学形式的调整以及病毒疫情相关知识点的强化,激发了生物学专业学生对病毒学、流行病学及公共卫生健康等问题的关注。  相似文献   

20.
Instructors can deliberately design for equity, diversity, and inclusion, including for large first‐year classes, and now instructors have added challenges given COVID‐19. Our paper explores the question: How do we integrate equity, diversity, and inclusion and universal design for learning (UDL) into first‐year, undergraduate ecology and evolution introductory lessons given the COVID‐19 pandemic? Given the large field exploring equity, diversity, and inclusion, we chose to focus on developing reflective practice question rubrics for before, during, and after lessons to encourage UDL for instructors, teaching assistants, and learners. We conducted a focus group within our team and discussed ideas related to online learning, including related pitfalls and solutions. Lastly, we created a figure to illustrate ideas and end with a general discussion. Our reflective practice questions for UDL rubrics, figure, focus group, and discussion aim to increase positive action for equity, diversity, and inclusion in the classroom and beyond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号