首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 178 毫秒
1.
沃尔巴克氏体Wolbachia为母系传播的胞内共生菌,可通过对宿主产生多种调控方式扩大其自身在宿主种群的传播。据推测,有40%~60%的节肢动物都感染有Wolbachia,并可根据不同株系间的系统发育关系将其分为多个超群。为了有助于深入研究Wolbachia对其宿主的调控方式及其调控机制及提出更为有效的害虫生物防治策略,本文综述了节肢动物内共生菌Wolbachia的研究现状。1924年Wolbachia被报道首次发现于尖音库蚊Culex pipiens的生殖组织中,1971年确认其与宿主的胞质不亲和现象有关。Wolbachia可以通过胞质不亲和、杀雄、雌性化、孤雌生殖等作用方式调控宿主的生殖。除生殖调控之外,Wolbachia对宿主的调控方式还包括调控宿主新陈代谢、抵制病原菌、影响宿主生殖力等。Wolbachia调控的胞质不亲和现象可用"修饰-营救"(modification-rescue)模型解释,且已有与Wolbachia诱导宿主胞质不亲和相关的功能基因被报道。wMel株系是首个公布全基因组序列的Wolbachia株系,随后又有数十种不同株系的Wolbachia基因组陆续被破译。w...  相似文献   

2.
共生菌Wolbachia引起宿主细胞质不亲和的研究进展   总被引:1,自引:0,他引:1  
Wolbachia 是一类广泛存在于节肢动物以及线虫体内细胞质中呈母系遗传的共生细菌,能够在宿主中产生细胞质不亲和、孤雌生殖、雌性化及杀雄等多种生殖调控作用,其中细胞质不亲和是指被 Wolbachia 感染的雄性个体与未感染的雌性个体(单向不亲和),或者感染不同株系 Wolbachia 的雌性个体(双向不亲和)交配后不能或很少产生后代,或者后代偏雄性的现象。细胞质不亲和作用使感染的雌性个体在种群中具有很大的生殖优势,凭借这种生殖优势,Wolbachia 能够迅速在宿主种群中扩张。细胞质不亲和的机理探索主要集中在细胞学水平上,其中广为接受的精子“修饰”和“拯救”理论认为,精巢中的 Wolbachia 能够修饰宿主的精细胞,使其不能和卵细胞正常融合,但是当母本感染相同的 Wolbachia 时,就能够将“修饰”过的精子细胞“拯救”过来,使其恢复与卵细胞的正常融合。而分子机理上的探索也开始在转录组、基因组和miRNA水平上对部分昆虫展开了研究。影响细胞质不亲和的因素有很多,包括宿主遗传背景、 Wolbachia 株系、Wolbachia 基因型、共生菌密度(浓度、滴度)、雄虫年龄、环境因素以及共生菌在宿主生殖组织的分布等。近年来,人类也应用细胞质不亲和控制害虫(主要是蚊虫)和人类疾病,取得了较好的进展。  相似文献   

3.
王哲  乔格侠 《昆虫知识》2011,48(6):1823-1834
Wolbachia pipientis是一种广泛存在于节肢动物和线虫生殖组织中的细胞内共生菌,通过母系生殖细胞在寄主种群内垂直传播。据分析,Wolbachia在昆虫中的感染率大约为66%,是昆虫中分布最广泛的胞内共生菌。Wolbachia能够以多种方式调控寄主的生殖行为,包括诱导细胞质不亲和、诱导孤雌生殖、雌性化、杀雄作用等。近10年来,Wolbachia的研究在多个领域都取得了长足进展。本文介绍了Wolbachia的多样性与分布、对寄主生殖行为的影响、基因组结构,以及其与寄主在基因组水平上的相互作用等领域的最新研究成果,并展望了Wolbachia研究的发展趋势。  相似文献   

4.
沃尔巴克氏体Wolbachia对宿主的生殖调控作用及其研究进展   总被引:2,自引:0,他引:2  
董鹏  王进军 《昆虫知识》2006,43(3):288-294
沃尔巴克氏体Wolbachia是广泛分布于节肢动物体内的共生微生物,可通过宿主卵的细胞质传递给子代。Wolbachia通过多种方式调控其宿主的生殖活动,包括细胞质不亲和、孤雌生殖、雌性化、杀雄性和增强雄性或雌性的生殖力。通过这些调控作用促进其在宿主种群内的广泛传播。文章简要综述Wolbachia对宿主的生殖调控作用、水平传播、Wolbachia基因和应用方面的研究。  相似文献   

5.
《环境昆虫学报》2013,35(4):486-493
内共生菌是存在于宿主细胞内,与宿主存在互利共生关系的一类细菌。内共生菌在节肢动物的生长和繁殖过程中起着十分重要的作用, 包括向宿主提供食物中缺乏的营养物质、调控宿主生殖方式,增强宿主适应性等。Cardinium属于拟杆菌门Bacteroidetes,通过细胞质遗传,具有诱导宿主细胞质不亲和、产雌孤雌生殖、雌性化等生殖异常现象,并且还可影响宿主的适合度,以利于其本身在宿主不同种群和世代间的分布和传播。由于Cardinium是近几年人们新发现的一类新型内共生菌,目前对其在节肢动物宿主体内的分布、其生物学生态学功能等尚不完全明确。本文在综合国内外文献资料的基础上,从Cardinium在节肢动物体内的分布、其在昆虫种群的传播规律及其检测手段、其对节肢动物宿主的生殖调控作用等几个方面进行了综述,并对其应用前景进行了展望,以期引起更多的学者关注该胞内共生菌,推动人们对该内共生菌的研究及利用。  相似文献   

6.
胞内共生菌Wolbachia能对多种叶螨产生生殖调控作用.为更好地筛选有潜在应用价值的Wolbachia株系,本研究应用PCR技术对自然种群的截形叶螨Tetranychus truncatus、二斑叶螨T.urticae、神泽叶螨T.kanzawai 和山楂叶螨Amphitetranychus viennensis体内的Wolbachia感染情况进行检测,并对Wolbachia的wsp基因进行序列分析和基因重组检测.结果表明,叶螨中的Wolbachia株系具有较高的遗传多样性,其中截形叶螨感染两种分化较大的株系.不同叶螨感染特有的Wolbachia株系说明Wolbachia与其宿主存在一定的协同进化关系.二斑叶螨和截形叶螨感染同一株系的Wolbachia,可能由于水平传播造成.同时,不同株系Wolbachia的wsp基因间普遍存在着基因重组现象.  相似文献   

7.
Wolbachia是一类胞质遗传的内共生菌, 广泛分布于节肢动物和其他动物中, 与宿主的生殖调控密切相关。通过研究迁飞性害虫稻纵卷叶螟Cnaphalocrocis medinalis (Guenée)的Wolbachia感染情况, 为探讨Wolbachia在迁飞性昆虫中的生殖调控和传递方式等提供基础资料。本研究应用Wolbachia的ftsZ基因和16S rDNA基因的特异性引物, 通过PCR扩增的方法对我国20个地区的稻纵卷叶螟样本进行了检测。结果表明: 中国不同地区的稻纵卷叶螟感染Wolbachia的现象较为普遍, 其中浙江温州和江苏扬州样本的感染率最高(90%); 四川雅安、 湖南长沙和天津宁河样本的感染率最低(40%)。不同地区稻纵卷叶螟的Wolbachia ftsZ基因序列完全一致, 而且不同地区的Wolbachia 16S rDNA基因序列也完全相同。此外, 稻纵卷叶螟感染的Wolbachia ftsZ基因和16S rDNA基因序列与其他物种感染的Wolbachia B群的ftsZ基因序列和16S rDNA基因序列相似性分别在99%~100%和98%~99%之间, 说明我国稻纵卷叶螟感染的Wolbachia隶属B群。研究结果表明, 稻纵卷叶螟感染的Wolbachia类型较为单一, 这也是我国有关稻纵卷叶螟内共生菌Wolbachia的首次研究报道。  相似文献   

8.
Wolbachia属共生菌及其对节肢动物宿主适合度的影响   总被引:5,自引:0,他引:5  
Wolbachia是广泛分布于节肢动物体生殖组织内呈母质遗传的一类共生细菌。近30多年来,大量的研究主要集中于Wolbachia对宿主生殖方式的调控方面;近年来的研究发现,Wolbachia对节肢动物宿主的适合度具有不同程度的影响。现对Wolbachia的宿主分布、存在部位及其对节肢动物宿主种群适合度的影响等方面进行了综述,探讨了Wolbachia在该领域的研究意义和潜在的应用价值。  相似文献   

9.
Wolbachia是一类存在于包括绝大多数昆虫在内的节肢动物以及线虫体内的细胞内共生菌,通过母系传递给子代。该菌能以多种方式调控宿主的生殖活动,包括诱导细胞质不亲和、孤雌生殖、杀雄、雌性化和增加雌性生殖力。本文对Wolbachia的基础生物学及其分布、以及该菌对宿主果蝇的影响等进行了评述,并对与果蝇相关的Wolbachia的研究现状及趋势进行了讨论。  相似文献   

10.
沃尔巴克氏体(Wolbachia)作为节肢动物的胞内共生菌,可以引起宿主产生雌性化、孤雌生殖、杀雄和胞质不相容性(cytoplasmic incompatibility, CI) 4种生殖表型。其中CI是最常见的现象,表现为受感染的雄性昆虫与未感染或感染不兼容Wolbachia的雌性昆虫交配时引起胚胎死亡;而雌性感染同种Wolbachia时胚胎能够正常发育。CI是由被称为CI因子(cifA和cifB)的Wolbachia基因对调控的。其中,CifB作为毒剂在雄性中表达诱导产生CI,而CifA作为解毒剂在雌性中表达拯救CI。本文综述了CI因子结构、功能和作用机制的研究,以期为未来利用Wolbachia和CI进行蚊媒疾病和农业虫害的防控奠定基础。  相似文献   

11.
Wolbachia pipientis: intracellular infection and pathogenesis in Drosophila   总被引:3,自引:0,他引:3  
Wolbachia pipientis is a vertically transmitted, obligate intracellular symbiont of arthropods. The bacterium is best known for its ability to manipulate host reproductive biology where it can induce cytoplasmic incompatibility, parthenogenesis, feminization and male-killing. In addition to the various reproductive phenotypes it generates through interaction with host reproductive tissue it is also known to infect somatic tissues. However, relatively little is known about the consequences of infection of these tissues with the exception that in some hosts Wolbachia acts as a classical mutualist and in others a pathogen, dramatically shortening adult insect lifespan. Manipulation experiments have demonstrated that the severity of Wolbachia-induced effects on the host is determined by a combination of host genotype, Wolbachia strain, host tissue localization, and interaction with the environment. The recent completion of the whole genome sequence of Wolbachia pipientis wMel strain indicates that it is likely to use a type IV secretion system to establish and maintain infection in its host. Moreover, an unusual abundance of genes encoding proteins with eukaryotic-like ankyrin repeat domains suggest a function in the various described phenotypic effects in hosts.  相似文献   

12.
The endosymbiotic bacterium Wolbachia pipientis infects a wide range of arthropods, in which it induces a variety of reproductive phenotypes, including cytoplasmic incompatibility (CI), parthenogenesis, male killing, and reversal of genetic sex determination. The recent sequencing and annotation of the first Wolbachia genome revealed an unusually high number of genes encoding ankyrin domain (ANK) repeats. These ANK genes are likely to be important in mediating the Wolbachia-host interaction. In this work we determined the distribution and expression of the different ANK genes found in the sequenced Wolbachia wMel genome in nine Wolbachia strains that induce different phenotypic effects in their hosts. A comparison of the ANK genes of wMel and the non-CI-inducing wAu Wolbachia strain revealed significant differences between the strains. This was reflected in sequence variability in shared genes that could result in alterations in the encoded proteins, such as motif deletions, amino acid insertions, and in some cases disruptions due to insertion of transposable elements and premature stops. In addition, one wMel ANK gene, which is part of an operon, was absent in the wAu genome. These variations are likely to affect the affinity, function, and cellular location of the predicted proteins encoded by these genes.  相似文献   

13.
The obligate intracellular bacterium Wolbachia pipientis strain wPip induces cytoplasmic incompatibility (CI), patterns of crossing sterility, in the Culex pipiens group of mosquitoes. The complete sequence is presented of the 1.48-Mbp genome of wPip which encodes 1386 coding sequences (CDSs), representing the first genome sequence of a B-supergroup Wolbachia. Comparisons were made with the smaller genomes of Wolbachia strains wMel of Drosophila melanogaster, an A-supergroup Wolbachia that is also a CI inducer, and wBm, a mutualist of Brugia malayi nematodes that belongs to the D-supergroup of Wolbachia. Despite extensive gene order rearrangement, a core set of Wolbachia genes shared between the 3 genomes can be identified and contrasts with a flexible gene pool where rapid evolution has taken place. There are much more extensive prophage and ankyrin repeat encoding (ANK) gene components of the wPip genome compared with wMel and wBm, and both are likely to be of considerable importance in wPip biology. Five WO-B-like prophage regions are present and contain some genes that are identical or highly similar in multiple prophage copies, whereas other genes are unique, and it is likely that extensive recombination, duplication, and insertion have occurred between copies. A much larger number of genes encode ankyrin repeat (ANK) proteins in wPip, with 60 present compared with 23 in wMel, many of which are within or close to the prophage regions. It is likely that this pattern is partly a result of expansions in the wPip lineage, due for example to gene duplication, but their presence is in some cases more ancient. The wPip genome underlines the considerable evolutionary flexibility of Wolbachia, providing clear evidence for the rapid evolution of ANK-encoding genes and of prophage regions. This host-Wolbachia system, with its complex patterns of sterility induced between populations, now provides an excellent model for unraveling the molecular systems underlying host reproductive manipulation.  相似文献   

14.
Wolbachia are maternally inherited intracellular alpha-Proteobacteria found in numerous arthropod and filarial nematode species. They influence the biology of their hosts in many ways. In some cases, they act as obligate mutualists and are required for the normal development and reproduction of the host. They are best known, however, for the various reproductive parasitism traits that they can generate in infected hosts. These include cytoplasmic incompatibility (CI) between individuals of different infection status, the parthenogenetic production of females, the selective killing of male embryos, and the feminization of genetic males. Wolbachia infections of Drosophila melanogaster are extremely common in both wild populations and long-term laboratory stocks. Utilizing the newly completed genome sequence of Wolbachia pipientis wMel, we have identified a number of polymorphic markers that can be used to discriminate among five different Wolbachia variants within what was previously thought to be the single clonal infection of D. melanogaster. Analysis of long-term lab stocks together with wild-caught flies indicates that one of these variants has replaced the others globally within the last century. This is the first report of a global replacement of a Wolbachia strain in an insect host species. The sweep is at odds with current theory that cannot explain how Wolbachia can invade this host species given the observed cytoplasmic incompatibility characteristics of Wolbachia infections in D. melanogaster in the field.  相似文献   

15.
Wolbachia are obligate, maternally inherited, intracellular bacteria that infect numerous insects and other invertebrates. Wolbachia infections have evolved multiple mechanisms to manipulate host reproduction and facilitate invasion of naive host populations. One such mechanism is cytoplasmic incompatibility (CI) that occurs in many insect species, including Aedes albopictus (Asian tiger mosquito). The multiple Wolbachia infections that occur naturally in A. albopictus make this mosquito a useful system in which to study CI. Here, experiments employ mosquito strains that have been introgressed to provide genetically similar strains that harbor differing Wolbachia infection types. Cytoplasmic incompatibility levels, host longevity, egg hatch rates, and fecundity are examined. Crossing results demonstrate a pattern of additive unidirectional cytoplasmic incompatibility. Furthermore, relative to uninfected females, infected females are at a reproductive advantage due to both cytoplasmic incompatibility and a fitness increase associated with Wolbachia infection. In contrast, no fitness difference was observed in comparisons of single- and superinfected females. We discuss the observed results in regard to the evolution of the Wolbachia/A. albopictus symbiosis and the observed pattern of Wolbachia infection in natural populations.  相似文献   

16.
Vertically transmitted symbionts suffer a severe reduction in numbers when they pass through host generations, resulting in genetic homogeneity or even clonality of their populations. Wolbachia endosymbionts that induce cytoplasmic incompatibility in their hosts depart from this rule, because cytoplasmic incompatibility actively maintains multiple infection within hosts. Hosts and symbionts are thus probably under peculiar selective pressures that must shape the way intracellular bacterial populations are regulated. We studied the density and location of Wolbachia within adult Leptopilina heterotoma, a haplodiploid wasp that is parasitic on Drosophila and that is naturally infected with three Wolbachia strains, but for which we also obtained one simply infected and two doubly infected lines. Comparison of these four lines by quantitative polymerase chain reaction using a real-time detection system showed that total Wolbachia density varies according to the infection status of individuals, while the specific density of each Wolbachia strain remains constant regardless of the presence of other strains. This suggests that Wolbachia strains do not compete with one another within the same host individual, and that a strain-specific regulatory mechanism is operating. We discuss the regulatory mechanisms that are involved, and how this process might have evolved as a response to selective pressures acting on both partners.  相似文献   

17.
Wolbachia bacteria are obligate intracellular alpha-Proteobacteria of arthropods and nematodes. Although widespread among isopod crustaceans, they have seldom been found in non-isopod crustacean species. Here, we report Wolbachia infection in fourteen new crustacean species. Our results extend the range of Wolbachia infections in terrestrial isopods and amphipods (class Malacostraca). We report the occurrence of two different Wolbachia strains in two host species (a terrestrial isopod and an amphipod). Moreover, the discovery of Wolbachia in the goose barnacle Lepas anatifera (subclass Thecostraca) establishes Wolbachia infection in class Maxillopoda. The new bacterial strains are closely related to B-supergroup Wolbachia strains previously reported from crustacean hosts. Our results suggest that Wolbachia infection may be much more widespread in crustaceans than previously thought. The presence of related Wolbachia strains in highly divergent crustacean hosts suggests that Wolbachia endosymbionts can naturally adapt to a wide range of crustacean hosts. Given the ability of isopod Wolbachia strains to induce feminization of genetic males or cytoplasmic incompatibility, we speculate that manipulation of crustacean-borne Wolbachia bacteria might represent potential tools for controlling crustacean species of commercial interest and crustacean or insect disease vectors.  相似文献   

18.
Wolbachia are maternally inherited endosymbionts that can invade arthropod populations through manipulation of their reproduction. In mosquitoes, Wolbachia induce embryonic death, known as cytoplasmic incompatibility (CI), whenever infected males mate with females either uninfected or infected with an incompatible strain. Although genetic determinants of CI are unknown, a functional model involving the so-called mod and resc factors has been proposed. Natural populations of Culex pipiens mosquito display a complex CI relationship pattern associated with the highest Wolbachia (wPip) genetic polymorphism reported so far. We show here that C. pipiens populations from La Réunion, a geographically isolated island in the southwest of the Indian Ocean, are infected with genetically closely related wPip strains. Crossing experiments reveal that these Wolbachia are all mutually compatible. However, crosses with genetically more distant wPip strains indicate that Wolbachia strains from La Réunion belong to at least five distinct incompatibility groups (or crossing types). These incompatibility properties which are strictly independent from the nuclear background, formally establish that in C. pipiens, CI is controlled by several Wolbachia mod/resc factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号